Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Dec;17(12):7069–7076. doi: 10.1128/mcb.17.12.7069

Base pair conformation-dependent excision of benzo[a]pyrene diol epoxide-guanine adducts by human nucleotide excision repair enzymes.

M T Hess 1, D Gunz 1, N Luneva 1, N E Geacintov 1, H Naegeli 1
PMCID: PMC232563  PMID: 9372938

Abstract

Human nucleotide excision repair processes carcinogen-DNA adducts at highly variable rates, even at adjacent sites along individual genes. Here, we identify conformational determinants of fast or slow repair by testing excision of N2-guanine adducts formed by benzo[a]pyrene diol epoxide (BPDE), a potent and ubiquitous mutagen that induces mainly G x C-->T x A transversions and frameshift deletions. We found that human nucleotide excision repair processes the predominant (+)-trans-BPDE-N2-dG adduct 15 times less efficiently than a standard acetylaminofluorene-C8-dG lesion in the same sequence. No difference was observed between (+)-trans- and (-)-trans-BPDE-N2-dG, but excision was enhanced about 10-fold by changing the adduct configurations to either (+)-cis- or (-)-cis-BPDE-N2-dG. Conversely, excision of (+)-cis- and (-)-cis- but not (+)-trans-BPDE-N2-dG was reduced about 10-fold when the complementary cytosine was replaced by adenine, and excision of these BPDE lesions was essentially abolished when the complementary deoxyribonucleotide was missing. Thus, a set of chemically identical BPDE adducts yielded a greater-than-100-fold range of repair rates, demonstrating that nucleotide excision repair activity is entirely dictated by local DNA conformation. In particular, this unique comparison between structurally highly defined substrates shows that fast excision of BPDE-N2-dG lesions is correlated with displacement of both the modified guanine and its partner base in the complementary strand from their normal intrahelical positions. The very slow excision of carcinogen-DNA adducts located opposite deletion sites reveals a cellular strategy that minimizes the fixation of frameshifts after mutagenic translesion synthesis.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboussekhra A., Biggerstaff M., Shivji M. K., Vilpo J. A., Moncollin V., Podust V. N., Protić M., Hübscher U., Egly J. M., Wood R. D. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell. 1995 Mar 24;80(6):859–868. doi: 10.1016/0092-8674(95)90289-9. [DOI] [PubMed] [Google Scholar]
  2. Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
  3. Chen R. H., Maher V. M., Brouwer J., van de Putte P., McCormick J. J. Preferential repair and strand-specific repair of benzo[a]pyrene diol epoxide adducts in the HPRT gene of diploid human fibroblasts. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5413–5417. doi: 10.1073/pnas.89.12.5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng S. C., Hilton B. D., Roman J. M., Dipple A. DNA adducts from carcinogenic and noncarcinogenic enantiomers of benzo[a]pyrene dihydrodiol epoxide. Chem Res Toxicol. 1989 Sep-Oct;2(5):334–340. doi: 10.1021/tx00011a011. [DOI] [PubMed] [Google Scholar]
  5. Conney A. H. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res. 1982 Dec;42(12):4875–4917. [PubMed] [Google Scholar]
  6. Cosman M., Fiala R., Hingerty B. E., Amin S., Geacintov N. E., Broyde S., Patel D. J. Solution conformation of the (+)-cis-anti-[BP]dG adduct opposite a deletion site in a DNA duplex: intercalation of the covalently attached benzo[a]pyrene into the helix with base displacement of the modified deoxyguanosine into the minor groove. Biochemistry. 1994 Sep 27;33(38):11518–11527. doi: 10.1021/bi00204a014. [DOI] [PubMed] [Google Scholar]
  7. Cosman M., Fiala R., Hingerty B. E., Amin S., Geacintov N. E., Broyde S., Patel D. J. Solution conformation of the (+)-trans-anti-[BP]dG adduct opposite a deletion site in a DNA duplex: intercalation of the covalently attached benzo[a]pyrene into the helix with base displacement of the modified deoxyguanosine into the major groove. Biochemistry. 1994 Sep 27;33(38):11507–11517. doi: 10.1021/bi00204a013. [DOI] [PubMed] [Google Scholar]
  8. Cosman M., Hingerty B. E., Luneva N., Amin S., Geacintov N. E., Broyde S., Patel D. J. Solution conformation of the (-)-cis-anti-benzo[a]pyrenyl-dG adduct opposite dC in a DNA duplex: intercalation of the covalently attached BP ring into the helix with base displacement of the modified deoxyguanosine into the major groove. Biochemistry. 1996 Jul 30;35(30):9850–9863. doi: 10.1021/bi9605346. [DOI] [PubMed] [Google Scholar]
  9. Cosman M., Ibanez V., Geacintov N. E., Harvey R. G. Preparation and isolation of adducts in high yield derived from the binding of two benzo[a]pyrene-7,8-dihydroxy-9,10-oxide stereoisomers to the oligonucleotide d(ATATGTATA). Carcinogenesis. 1990 Sep;11(9):1667–1672. doi: 10.1093/carcin/11.9.1667. [DOI] [PubMed] [Google Scholar]
  10. Cosman M., de los Santos C., Fiala R., Hingerty B. E., Ibanez V., Luna E., Harvey R., Geacintov N. E., Broyde S., Patel D. J. Solution conformation of the (+)-cis-anti-[BP]dG adduct in a DNA duplex: intercalation of the covalently attached benzo[a]pyrenyl ring into the helix and displacement of the modified deoxyguanosine. Biochemistry. 1993 Apr 27;32(16):4145–4155. doi: 10.1021/bi00067a001. [DOI] [PubMed] [Google Scholar]
  11. Cosman M., de los Santos C., Fiala R., Hingerty B. E., Singh S. B., Ibanez V., Margulis L. A., Live D., Geacintov N. E., Broyde S. Solution conformation of the major adduct between the carcinogen (+)-anti-benzo[a]pyrene diol epoxide and DNA. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1914–1918. doi: 10.1073/pnas.89.5.1914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fountain M. A., Krugh T. R. Structural characterization of a (+)-trans-anti-benzo[a]pyrene-DNA adduct using NMR, restrained energy minimization, and molecular dynamics. Biochemistry. 1995 Mar 14;34(10):3152–3161. doi: 10.1021/bi00010a004. [DOI] [PubMed] [Google Scholar]
  13. Fuchs R., Daune M. Physical studies on deoxyribonucleic acid after covalent binding of a carcinogen. Biochemistry. 1972 Jul 4;11(14):2659–2666. doi: 10.1021/bi00764a017. [DOI] [PubMed] [Google Scholar]
  14. Gao S., Drouin R., Holmquist G. P. DNA repair rates mapped along the human PGK1 gene at nucleotide resolution. Science. 1994 Mar 11;263(5152):1438–1440. doi: 10.1126/science.8128226. [DOI] [PubMed] [Google Scholar]
  15. Geacintov N. E., Cosman M., Mao B., Alfano A., Ibanez V., Harvey R. G. Spectroscopic characteristics and site I/site II classification of cis and trans benzo[a]pyrene diolepoxide enantiomer-guanosine adducts in oligonucleotides and polynucleotides. Carcinogenesis. 1991 Nov;12(11):2099–2108. doi: 10.1093/carcin/12.11.2099. [DOI] [PubMed] [Google Scholar]
  16. Grunberger D., Nelson J. H., Cantor C. R., Weinstein I. B. Coding and conformational properties of oligonucleotides modified with the carcinogen N-2-acetylaminofluorene. Proc Natl Acad Sci U S A. 1970 Jun;66(2):488–494. doi: 10.1073/pnas.66.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gunz D., Hess M. T., Naegeli H. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism. J Biol Chem. 1996 Oct 11;271(41):25089–25098. doi: 10.1074/jbc.271.41.25089. [DOI] [PubMed] [Google Scholar]
  18. Hanawalt P. C. Transcription-coupled repair and human disease. Science. 1994 Dec 23;266(5193):1957–1958. doi: 10.1126/science.7801121. [DOI] [PubMed] [Google Scholar]
  19. Hansson J., Munn M., Rupp W. D., Kahn R., Wood R. D. Localization of DNA repair synthesis by human cell extracts to a short region at the site of a lesion. J Biol Chem. 1989 Dec 25;264(36):21788–21792. [PubMed] [Google Scholar]
  20. Hess M. T., Schwitter U., Petretta M., Giese B., Naegeli H. Bipartite substrate discrimination by human nucleotide excision repair. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6664–6669. doi: 10.1073/pnas.94.13.6664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hess M. T., Schwitter U., Petretta M., Giese B., Naegeli H. Site-specific DNA substrates for human excision repair: comparison between deoxyribose and base adducts. Chem Biol. 1996 Feb;3(2):121–128. doi: 10.1016/s1074-5521(96)90288-4. [DOI] [PubMed] [Google Scholar]
  22. Huang J. C., Hsu D. S., Kazantsev A., Sancar A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12213–12217. doi: 10.1073/pnas.91.25.12213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Huang J. C., Svoboda D. L., Reardon J. T., Sancar A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5' and the 6th phosphodiester bond 3' to the photodimer. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3664–3668. doi: 10.1073/pnas.89.8.3664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Manley J. L., Fire A., Cano A., Sharp P. A., Gefter M. L. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3855–3859. doi: 10.1073/pnas.77.7.3855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matsunaga T., Mu D., Park C. H., Reardon J. T., Sancar A. Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J Biol Chem. 1995 Sep 1;270(35):20862–20869. doi: 10.1074/jbc.270.35.20862. [DOI] [PubMed] [Google Scholar]
  26. Mellon I., Spivak G., Hanawalt P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987 Oct 23;51(2):241–249. doi: 10.1016/0092-8674(87)90151-6. [DOI] [PubMed] [Google Scholar]
  27. Mitchell D. L., Nairn R. S. The biology of the (6-4) photoproduct. Photochem Photobiol. 1989 Jun;49(6):805–819. doi: 10.1111/j.1751-1097.1989.tb05578.x. [DOI] [PubMed] [Google Scholar]
  28. Moggs J. G., Szymkowski D. E., Yamada M., Karran P., Wood R. D. Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Res. 1997 Feb 1;25(3):480–491. doi: 10.1093/nar/25.3.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moggs J. G., Yarema K. J., Essigmann J. M., Wood R. D. Analysis of incision sites produced by human cell extracts and purified proteins during nucleotide excision repair of a 1,3-intrastrand d(GpTpG)-cisplatin adduct. J Biol Chem. 1996 Mar 22;271(12):7177–7186. doi: 10.1074/jbc.271.12.7177. [DOI] [PubMed] [Google Scholar]
  30. Moriya M., Spiegel S., Fernandes A., Amin S., Liu T., Geacintov N., Grollman A. P. Fidelity of translesional synthesis past benzo[a]pyrene diol epoxide-2'-deoxyguanosine DNA adducts: marked effects of host cell, sequence context, and chirality. Biochemistry. 1996 Dec 24;35(51):16646–16651. doi: 10.1021/bi9608875. [DOI] [PubMed] [Google Scholar]
  31. Mu D., Bertrand-Burggraf E., Huang J. C., Fuchs R. P., Sancar A., Fuchs B. P. Human and E.coli excinucleases are affected differently by the sequence context of acetylaminofluorene-guanine adduct. Nucleic Acids Res. 1994 Nov 25;22(23):4869–4871. doi: 10.1093/nar/22.23.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mu D., Hsu D. S., Sancar A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem. 1996 Apr 5;271(14):8285–8294. doi: 10.1074/jbc.271.14.8285. [DOI] [PubMed] [Google Scholar]
  33. Mu D., Tursun M., Duckett D. R., Drummond J. T., Modrich P., Sancar A. Recognition and repair of compound DNA lesions (base damage and mismatch) by human mismatch repair and excision repair systems. Mol Cell Biol. 1997 Feb;17(2):760–769. doi: 10.1128/mcb.17.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. O'Handley S. F., Sanford D. G., Xu R., Lester C. C., Hingerty B. E., Broyde S., Krugh T. R. Structural characterization of an N-acetyl-2-aminofluorene (AAF) modified DNA oligomer by NMR, energy minimization, and molecular dynamics. Biochemistry. 1993 Mar 16;32(10):2481–2497. doi: 10.1021/bi00061a005. [DOI] [PubMed] [Google Scholar]
  35. Pontén I., Kim S. K., Gräslund A., Nordén B., Jernström B. Synthesis and characterization of a (+)-anti-benzo[a]pyrene 7,8-dihydrodiol 9,10-epoxide-oligonucleotide adduct. IARC Sci Publ. 1994;(125):433–436. [PubMed] [Google Scholar]
  36. Reardon J. T., Thompson L. H., Sancar A. Rodent UV-sensitive mutant cell lines in complementation groups 6-10 have normal general excision repair activity. Nucleic Acids Res. 1997 Mar 1;25(5):1015–1021. doi: 10.1093/nar/25.5.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ruggeri B., DiRado M., Zhang S. Y., Bauer B., Goodrow T., Klein-Szanto A. J. Benzo[a]pyrene-induced murine skin tumors exhibit frequent and characteristic G to T mutations in the p53 gene. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1013–1017. doi: 10.1073/pnas.90.3.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sancar A. DNA excision repair. Annu Rev Biochem. 1996;65:43–81. doi: 10.1146/annurev.bi.65.070196.000355. [DOI] [PubMed] [Google Scholar]
  39. Shibutani S., Margulis L. A., Geacintov N. E., Grollman A. P. Translesional synthesis on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry. 1993 Jul 27;32(29):7531–7541. doi: 10.1021/bi00080a027. [DOI] [PubMed] [Google Scholar]
  40. Tornaletti S., Pfeifer G. P. Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science. 1994 Mar 11;263(5152):1436–1438. doi: 10.1126/science.8128225. [DOI] [PubMed] [Google Scholar]
  41. Veaute X., Fuchs R. P. Polymorphism in N-2-acetylaminofluorene induced DNA structure as revealed by DNase I footprinting. Nucleic Acids Res. 1991 Oct 25;19(20):5603–5606. doi: 10.1093/nar/19.20.5603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Venema J., Bartosová Z., Natarajan A. T., van Zeeland A. A., Mullenders L. H. Transcription affects the rate but not the extent of repair of cyclobutane pyrimidine dimers in the human adenosine deaminase gene. J Biol Chem. 1992 May 5;267(13):8852–8856. [PubMed] [Google Scholar]
  43. Vousden K. H., Bos J. L., Marshall C. J., Phillips D. H. Mutations activating human c-Ha-ras1 protooncogene (HRAS1) induced by chemical carcinogens and depurination. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1222–1226. doi: 10.1073/pnas.83.5.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wei D., Maher V. M., McCormick J. J. Site-specific excision repair of 1-nitrosopyrene-induced DNA adducts at the nucleotide level in the HPRT gene of human fibroblasts: effect of adduct conformation on the pattern of site-specific repair. Mol Cell Biol. 1996 Jul;16(7):3714–3719. doi: 10.1128/mcb.16.7.3714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wei D., Maher V. M., McCormick J. J. Site-specific rates of excision repair of benzo[a]pyrene diol epoxide adducts in the hypoxanthine phosphoribosyltransferase gene of human fibroblasts: correlation with mutation spectra. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2204–2208. doi: 10.1073/pnas.92.6.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wei S. J., Chang R. L., Hennig E., Cui X. X., Merkler K. A., Wong C. Q., Yagi H., Jerina D. M., Conney A. H. Mutagenic selectivity at the HPRT locus in V-79 cells: comparison of mutations caused by bay-region benzo[a]pyrene 7,8-diol-9,-10-epoxide enantiomers with high and low carcinogenic activity. Carcinogenesis. 1994 Aug;15(8):1729–1735. doi: 10.1093/carcin/15.8.1729. [DOI] [PubMed] [Google Scholar]
  47. Wood R. D. DNA repair in eukaryotes. Annu Rev Biochem. 1996;65:135–167. doi: 10.1146/annurev.bi.65.070196.001031. [DOI] [PubMed] [Google Scholar]
  48. Wood R. D., Robins P., Lindahl T. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell. 1988 Apr 8;53(1):97–106. doi: 10.1016/0092-8674(88)90491-6. [DOI] [PubMed] [Google Scholar]
  49. Xu R., Birke S., Carberry S. E., Geacintov N. E., Swenberg C. E., Harvey R. G. Differences in unwinding of supercoiled DNA induced by the two enantiomers of anti-benzo[a]pyrene diol epoxide. Nucleic Acids Res. 1992 Dec 11;20(23):6167–6176. doi: 10.1093/nar/20.23.6167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Xu R., Mao B., Xu J., Li B., Birke S., Swenberg C. E., Geacintov N. E. Stereochemistry-dependent bending in oligonucleotide duplexes induced by site-specific covalent benzo[a]pyrene diol epoxide-guanine lesions. Nucleic Acids Res. 1995 Jun 25;23(12):2314–2319. doi: 10.1093/nar/23.12.2314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zegar I. S., Kim S. J., Johansen T. N., Horton P. J., Harris C. M., Harris T. M., Stone M. P. Adduction of the human N-ras codon 61 sequence with (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a] pyrene: structural refinement of the intercalated SRSR(61,2) (-)-(7S,8R,9S,10R)-N6-[10-(7,8,9,10- tetrahydrobenzo[a]pyrenyl)]-2'-deoxyadenosyl adduct from 1H NMR. Biochemistry. 1996 May 21;35(20):6212–6224. doi: 10.1021/bi9524732. [DOI] [PubMed] [Google Scholar]
  52. Zou Y., Liu T. M., Geacintov N. E., Van Houten B. Interaction of the UvrABC nuclease system with a DNA duplex containing a single stereoisomer of dG-(+)- or dG-(-)-anti-BPDE. Biochemistry. 1995 Oct 17;34(41):13582–13593. doi: 10.1021/bi00041a038. [DOI] [PubMed] [Google Scholar]
  53. de los Santos C., Cosman M., Hingerty B. E., Ibanez V., Margulis L. A., Geacintov N. E., Broyde S., Patel D. J. Influence of benzo[a]pyrene diol epoxide chirality on solution conformations of DNA covalent adducts: the (-)-trans-anti-[BP]G.C adduct structure and comparison with the (+)-trans-anti-[BP]G.C enantiomer. Biochemistry. 1992 Jun 16;31(23):5245–5252. doi: 10.1021/bi00138a002. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES