Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1997 Dec;17(12):7386–7397. doi: 10.1128/mcb.17.12.7386

Adenovirus-mediated overexpression of IRS-1 interacting domains abolishes insulin-stimulated mitogenesis without affecting glucose transport in 3T3-L1 adipocytes.

P M Sharma 1, K Egawa 1, T A Gustafson 1, J L Martin 1, J M Olefsky 1
PMCID: PMC232594  PMID: 9372969

Abstract

Activated insulin receptor (IR) interacts with its substrates, IRS-1, IRS-2, and Shc via the NPXY motif centered at Y960. This interaction is important for IRS-1 phosphorylation. Studies using the yeast two-hybrid system and sequence identity analysis between IRS-1 and IRS-2 have identified two putative elements, the PTB and SAIN domains, between amino acids 108 and 516 of IRS-1 that are sufficient for receptor interaction. However, their precise function in mediating insulin's bioeffects is not understood. We expressed the PTB and SAIN domains of IRS-1 in HIRcB fibroblasts and 3T3-L1 adipocytes utilizing replication-defective adenoviral infection to investigate their role in insulin signalling. In both cell types, overexpression of either the PTB or the SAIN protein caused a significant decrease in insulin-induced tyrosine phosphorylation of IRS-1 and Shc proteins, IRS-1-associated phosphatidylinositol 3-kinase (PI 3-K) enzymatic activity, p70s6k activation, and p44 and p42 mitogen-activated protein kinase (MAPK) phosphorylation. However, epidermal growth factor-induced Shc and MAPK phosphorylation was unaffected by the overexpressed proteins. These findings were associated with a complete inhibition of insulin-stimulated cell cycle progression. In 3T3-L1 adipocytes, PTB or SAIN expression extinguished IRS-1 phosphorylation with a corresponding 90% decrease in IRS-1-associated PI 3-K activity. p70s6k is a downstream target of PI 3-K, and insulin-stimulated p70s6k was inhibited by PTB or SAIN expression. Interestingly, overexpression of either PTB or SAIN protein did not affect insulin-induced AKT activation or insulin-stimulated 2-deoxyglucose transport, even though both of these bioeffects are inhibited by wortmannin. Thus, interference with the IRS-1-IR interaction inhibits insulin-stimulated IRS-1 and Shc phosphorylation, PI 3-K enzymatic activity, p70s6k activation, MAPK phosphorylation and cell cycle progression. In 3T3-L1 adipocytes, interference with the IR-IRS-1 interaction did not cause inhibition of insulin-stimulated AKT activation or glucose transport. These results indicate a bifurcation or subcompartmentalization of the insulin signalling pathway whereby some targets of PI 3-K (i.e., p70s6k) are dependent on IRS-1-associated PI 3-K and other targets (i.e., AKT and glucose transport) are not. IR-IRS-1 interaction is not essential for insulin's effect on glucose transport, and alternate, or redundant, pathways exist in these cells.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki E., Lipes M. A., Patti M. E., Brüning J. C., Haag B., 3rd, Johnson R. S., Kahn C. R. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994 Nov 10;372(6502):186–190. doi: 10.1038/372186a0. [DOI] [PubMed] [Google Scholar]
  2. Backer J. M., Myers M. G., Jr, Sun X. J., Chin D. J., Shoelson S. E., Miralpeix M., White M. F. Association of IRS-1 with the insulin receptor and the phosphatidylinositol 3'-kinase. Formation of binary and ternary signaling complexes in intact cells. J Biol Chem. 1993 Apr 15;268(11):8204–8212. [PubMed] [Google Scholar]
  3. Blaikie P., Immanuel D., Wu J., Li N., Yajnik V., Margolis B. A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors. J Biol Chem. 1994 Dec 23;269(51):32031–32034. [PubMed] [Google Scholar]
  4. Cheatham B., Kahn C. R. Insulin action and the insulin signaling network. Endocr Rev. 1995 Apr;16(2):117–142. doi: 10.1210/edrv-16-2-117. [DOI] [PubMed] [Google Scholar]
  5. Cheatham B., Vlahos C. J., Cheatham L., Wang L., Blenis J., Kahn C. R. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol. 1994 Jul;14(7):4902–4911. doi: 10.1128/mcb.14.7.4902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chung J., Kuo C. J., Crabtree G. R., Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992 Jun 26;69(7):1227–1236. doi: 10.1016/0092-8674(92)90643-q. [DOI] [PubMed] [Google Scholar]
  7. Clarke J. F., Young P. W., Yonezawa K., Kasuga M., Holman G. D. Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J. 1994 Jun 15;300(Pt 3):631–635. doi: 10.1042/bj3000631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Craparo A., O'Neill T. J., Gustafson T. A. Non-SH2 domains within insulin receptor substrate-1 and SHC mediate their phosphotyrosine-dependent interaction with the NPEY motif of the insulin-like growth factor I receptor. J Biol Chem. 1995 Jun 30;270(26):15639–15643. doi: 10.1074/jbc.270.26.15639. [DOI] [PubMed] [Google Scholar]
  9. Datta K., Bellacosa A., Chan T. O., Tsichlis P. N. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem. 1996 Nov 29;271(48):30835–30839. doi: 10.1074/jbc.271.48.30835. [DOI] [PubMed] [Google Scholar]
  10. Eck M. J., Dhe-Paganon S., Trüb T., Nolte R. T., Shoelson S. E. Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell. 1996 May 31;85(5):695–705. doi: 10.1016/s0092-8674(00)81236-2. [DOI] [PubMed] [Google Scholar]
  11. Gustafson T. A., He W., Craparo A., Schaub C. D., O'Neill T. J. Phosphotyrosine-dependent interaction of SHC and insulin receptor substrate 1 with the NPEY motif of the insulin receptor via a novel non-SH2 domain. Mol Cell Biol. 1995 May;15(5):2500–2508. doi: 10.1128/mcb.15.5.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haruta T., Morris A. J., Rose D. W., Nelson J. G., Mueckler M., Olefsky J. M. Insulin-stimulated GLUT4 translocation is mediated by a divergent intracellular signaling pathway. J Biol Chem. 1995 Nov 24;270(47):27991–27994. doi: 10.1074/jbc.270.47.27991. [DOI] [PubMed] [Google Scholar]
  13. He W., O'Neill T. J., Gustafson T. A. Distinct modes of interaction of SHC and insulin receptor substrate-1 with the insulin receptor NPEY region via non-SH2 domains. J Biol Chem. 1995 Oct 6;270(40):23258–23262. doi: 10.1074/jbc.270.40.23258. [DOI] [PubMed] [Google Scholar]
  14. Holgado-Madruga M., Emlet D. R., Moscatello D. K., Godwin A. K., Wong A. J. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature. 1996 Feb 8;379(6565):560–564. doi: 10.1038/379560a0. [DOI] [PubMed] [Google Scholar]
  15. Isakoff S. J., Yu Y. P., Su Y. C., Blaikie P., Yajnik V., Rose E., Weidner K. M., Sachs M., Margolis B., Skolnik E. Y. Interaction between the phosphotyrosine binding domain of Shc and the insulin receptor is required for Shc phosphorylation by insulin in vivo. J Biol Chem. 1996 Feb 23;271(8):3959–3962. doi: 10.1074/jbc.271.8.3959. [DOI] [PubMed] [Google Scholar]
  16. Jhun B. H., Rose D. W., Seely B. L., Rameh L., Cantley L., Saltiel A. R., Olefsky J. M. Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatidylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression. Mol Cell Biol. 1994 Nov;14(11):7466–7475. doi: 10.1128/mcb.14.11.7466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kavanaugh W. M., Williams L. T. An alternative to SH2 domains for binding tyrosine-phosphorylated proteins. Science. 1994 Dec 16;266(5192):1862–1865. doi: 10.1126/science.7527937. [DOI] [PubMed] [Google Scholar]
  18. Klip A., Li G., Logan W. J. Induction of sugar uptake response to insulin by serum depletion in fusing L6 myoblasts. Am J Physiol. 1984 Sep;247(3 Pt 1):E291–E296. doi: 10.1152/ajpendo.1984.247.3.E291. [DOI] [PubMed] [Google Scholar]
  19. Kohn A. D., Kovacina K. S., Roth R. A. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 1995 Sep 1;14(17):4288–4295. doi: 10.1002/j.1460-2075.1995.tb00103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kohn A. D., Summers S. A., Birnbaum M. J., Roth R. A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996 Dec 6;271(49):31372–31378. doi: 10.1074/jbc.271.49.31372. [DOI] [PubMed] [Google Scholar]
  21. Lavan B. E., Lienhard G. E. The insulin-elicited 60-kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J Biol Chem. 1993 Mar 15;268(8):5921–5928. [PubMed] [Google Scholar]
  22. Levy-Toledano R., Taouis M., Blaettler D. H., Gorden P., Taylor S. I. Insulin-induced activation of phosphatidyl inositol 3-kinase. Demonstration that the p85 subunit binds directly to the COOH terminus of the insulin receptor in intact cells. J Biol Chem. 1994 Dec 9;269(49):31178–31182. [PubMed] [Google Scholar]
  23. McGrory W. J., Bautista D. S., Graham F. L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology. 1988 Apr;163(2):614–617. doi: 10.1016/0042-6822(88)90302-9. [DOI] [PubMed] [Google Scholar]
  24. Momomura K., Tobe K., Seyama Y., Takaku F., Kasuga M. Insulin-induced tyrosine-phosphorylation in intact rat adipocytes. Biochem Biophys Res Commun. 1988 Sep 30;155(3):1181–1186. doi: 10.1016/s0006-291x(88)81264-6. [DOI] [PubMed] [Google Scholar]
  25. Morris A. J., Martin S. S., Haruta T., Nelson J. G., Vollenweider P., Gustafson T. A., Mueckler M., Rose D. W., Olefsky J. M. Evidence for an insulin receptor substrate 1 independent insulin signaling pathway that mediates insulin-responsive glucose transporter (GLUT4) translocation. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8401–8406. doi: 10.1073/pnas.93.16.8401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Myers M. G., Jr, Grammer T. C., Brooks J., Glasheen E. M., Wang L. M., Sun X. J., Blenis J., Pierce J. H., White M. F. The pleckstrin homology domain in insulin receptor substrate-1 sensitizes insulin signaling. J Biol Chem. 1995 May 19;270(20):11715–11718. doi: 10.1074/jbc.270.20.11715. [DOI] [PubMed] [Google Scholar]
  27. Okada T., Kawano Y., Sakakibara T., Hazeki O., Ui M. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem. 1994 Feb 4;269(5):3568–3573. [PubMed] [Google Scholar]
  28. Ouwens D. M., van der Zon G. C., Pronk G. J., Bos J. L., Möller W., Cheatham B., Kahn C. R., Maassen J. A. A mutant insulin receptor induces formation of a Shc-growth factor receptor bound protein 2 (Grb2) complex and p21ras-GTP without detectable interaction of insulin receptor substrate 1 (IRS1) with Grb2. Evidence for IRS1-independent p21ras-GTP formation. J Biol Chem. 1994 Dec 30;269(52):33116–33122. [PubMed] [Google Scholar]
  29. Patti M. E., Sun X. J., Bruening J. C., Araki E., Lipes M. A., White M. F., Kahn C. R. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice. J Biol Chem. 1995 Oct 20;270(42):24670–24673. doi: 10.1074/jbc.270.42.24670. [DOI] [PubMed] [Google Scholar]
  30. Pronk G. J., McGlade J., Pelicci G., Pawson T., Bos J. L. Insulin-induced phosphorylation of the 46- and 52-kDa Shc proteins. J Biol Chem. 1993 Mar 15;268(8):5748–5753. [PubMed] [Google Scholar]
  31. Pronk G. J., de Vries-Smits A. M., Buday L., Downward J., Maassen J. A., Medema R. H., Bos J. L. Involvement of Shc in insulin- and epidermal growth factor-induced activation of p21ras. Mol Cell Biol. 1994 Mar;14(3):1575–1581. doi: 10.1128/mcb.14.3.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Quon M. J., Butte A. J., Zarnowski M. J., Sesti G., Cushman S. W., Taylor S. I. Insulin receptor substrate 1 mediates the stimulatory effect of insulin on GLUT4 translocation in transfected rat adipose cells. J Biol Chem. 1994 Nov 11;269(45):27920–27924. [PubMed] [Google Scholar]
  33. Rose D. W., Saltiel A. R., Majumdar M., Decker S. J., Olefsky J. M. Insulin receptor substrate 1 is required for insulin-mediated mitogenic signal transduction. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):797–801. doi: 10.1073/pnas.91.2.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ruderman N. B., Kapeller R., White M. F., Cantley L. C. Activation of phosphatidylinositol 3-kinase by insulin. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1411–1415. doi: 10.1073/pnas.87.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sasaoka T., Draznin B., Leitner J. W., Langlois W. J., Olefsky J. M. Shc is the predominant signaling molecule coupling insulin receptors to activation of guanine nucleotide releasing factor and p21ras-GTP formation. J Biol Chem. 1994 Apr 8;269(14):10734–10738. [PubMed] [Google Scholar]
  36. Sharma P. M., Bowman M., Yu B. F., Sukumar S. A rodent model for Wilms tumors: embryonal kidney neoplasms induced by N-nitroso-N'-methylurea. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9931–9935. doi: 10.1073/pnas.91.21.9931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Skolnik E. Y., Batzer A., Li N., Lee C. H., Lowenstein E., Mohammadi M., Margolis B., Schlessinger J. The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science. 1993 Jun 25;260(5116):1953–1955. doi: 10.1126/science.8316835. [DOI] [PubMed] [Google Scholar]
  38. Skolnik E. Y., Lee C. H., Batzer A., Vicentini L. M., Zhou M., Daly R., Myers M. J., Jr, Backer J. M., Ullrich A., White M. F. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J. 1993 May;12(5):1929–1936. doi: 10.1002/j.1460-2075.1993.tb05842.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sun X. J., Rothenberg P., Kahn C. R., Backer J. M., Araki E., Wilden P. A., Cahill D. A., Goldstein B. J., White M. F. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature. 1991 Jul 4;352(6330):73–77. doi: 10.1038/352073a0. [DOI] [PubMed] [Google Scholar]
  40. Sun X. J., Wang L. M., Zhang Y., Yenush L., Myers M. G., Jr, Glasheen E., Lane W. S., Pierce J. H., White M. F. Role of IRS-2 in insulin and cytokine signalling. Nature. 1995 Sep 14;377(6545):173–177. doi: 10.1038/377173a0. [DOI] [PubMed] [Google Scholar]
  41. Tamemoto H., Kadowaki T., Tobe K., Yagi T., Sakura H., Hayakawa T., Terauchi Y., Ueki K., Kaburagi Y., Satoh S. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994 Nov 10;372(6502):182–186. doi: 10.1038/372182a0. [DOI] [PubMed] [Google Scholar]
  42. Tartare-Deckert S., Sawka-Verhelle D., Murdaca J., Van Obberghen E. Evidence for a differential interaction of SHC and the insulin receptor substrate-1 (IRS-1) with the insulin-like growth factor-I (IGF-I) receptor in the yeast two-hybrid system. J Biol Chem. 1995 Oct 6;270(40):23456–23460. doi: 10.1074/jbc.270.40.23456. [DOI] [PubMed] [Google Scholar]
  43. Tobe K., Tamemoto H., Yamauchi T., Aizawa S., Yazaki Y., Kadowaki T. Identification of a 190-kDa protein as a novel substrate for the insulin receptor kinase functionally similar to insulin receptor substrate-1. J Biol Chem. 1995 Mar 17;270(11):5698–5701. doi: 10.1074/jbc.270.11.5698. [DOI] [PubMed] [Google Scholar]
  44. Van Horn D. J., Myers M. G., Jr, Backer J. M. Direct activation of the phosphatidylinositol 3'-kinase by the insulin receptor. J Biol Chem. 1994 Jan 7;269(1):29–32. [PubMed] [Google Scholar]
  45. Voliovitch H., Schindler D. G., Hadari Y. R., Taylor S. I., Accili D., Zick Y. Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region. J Biol Chem. 1995 Jul 28;270(30):18083–18087. doi: 10.1074/jbc.270.30.18083. [DOI] [PubMed] [Google Scholar]
  46. Waters S. B., Pessin J. E. Insulin receptor substrate 1 and 2 (IRS1 and IRS2): what a tangled web we weave. Trends Cell Biol. 1996 Jan;6(1):1–4. doi: 10.1016/0962-8924(96)81024-5. [DOI] [PubMed] [Google Scholar]
  47. White M. F., Maron R., Kahn C. R. Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature. 1985 Nov 14;318(6042):183–186. doi: 10.1038/318183a0. [DOI] [PubMed] [Google Scholar]
  48. Yeh T. C., Ogawa W., Danielsen A. G., Roth R. A. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J Biol Chem. 1996 Feb 9;271(6):2921–2928. doi: 10.1074/jbc.271.6.2921. [DOI] [PubMed] [Google Scholar]
  49. Zhang-Sun G., Yang C., Viallet J., Feng G., Bergeron J. J., Posner B. I. A 60-kilodalton protein in rat hepatoma cells overexpressing insulin receptor was tyrosine phosphorylated and associated with Syp, phophatidylinositol 3-kinase, and Grb2 in an insulin-dependent manner. Endocrinology. 1996 Jul;137(7):2649–2658. doi: 10.1210/endo.137.7.8770882. [DOI] [PubMed] [Google Scholar]
  50. Zhang W. W., Koch P. E., Roth J. A. Detection of wild-type contamination in a recombinant adenoviral preparation by PCR. Biotechniques. 1995 Mar;18(3):444–447. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES