Abstract
Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes.
Full Text
The Full Text of this article is available as a PDF (705.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aikawa M. Parasitological review. Plasmodium: the fine structure of malarial parasites. Exp Parasitol. 1971 Oct;30(2):284–320. doi: 10.1016/0014-4894(71)90094-4. [DOI] [PubMed] [Google Scholar]
- Aldritt S. M., Joseph J. T., Wirth D. F. Sequence identification of cytochrome b in Plasmodium gallinaceum. Mol Cell Biol. 1989 Sep;9(9):3614–3620. doi: 10.1128/mcb.9.9.3614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Araujo F. G., Slifer T., Remington J. S. Rifabutin is active in murine models of toxoplasmosis. Antimicrob Agents Chemother. 1994 Mar;38(3):570–575. doi: 10.1128/aac.38.3.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldauf S. L., Palmer J. D. Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature. 1990 Mar 15;344(6263):262–265. doi: 10.1038/344262a0. [DOI] [PubMed] [Google Scholar]
- Barta J. R., Jenkins M. C., Danforth H. D. Evolutionary relationships of avian Eimeria species among other Apicomplexan protozoa: monophyly of the apicomplexa is supported. Mol Biol Evol. 1991 May;8(3):345–355. doi: 10.1093/oxfordjournals.molbev.a040653. [DOI] [PubMed] [Google Scholar]
- Basu M. K., Wilson H. J. Mercury risk from teeth. Nature. 1991 Jan 10;349(6305):109–109. doi: 10.1038/349109a0. [DOI] [PubMed] [Google Scholar]
- Beckers C. J., Roos D. S., Donald R. G., Luft B. J., Schwab J. C., Cao Y., Joiner K. A. Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics. J Clin Invest. 1995 Jan;95(1):367–376. doi: 10.1172/JCI117665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black F. T., Wildfang I. L., Borgbjerg K. Activity of fusidic acid against Plasmodium falciparum in vitro. Lancet. 1985 Mar 9;1(8428):578–579. doi: 10.1016/s0140-6736(85)91234-6. [DOI] [PubMed] [Google Scholar]
- Boer P. H., Gray M. W. Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell. 1988 Nov 4;55(3):399–411. doi: 10.1016/0092-8674(88)90026-8. [DOI] [PubMed] [Google Scholar]
- Bohne W., Gross U., Ferguson D. J., Heesemann J. Cloning and characterization of a bradyzoite-specifically expressed gene (hsp30/bag1) of Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants. Mol Microbiol. 1995 Jun;16(6):1221–1230. doi: 10.1111/j.1365-2958.1995.tb02344.x. [DOI] [PubMed] [Google Scholar]
- Borst P., Overdulve J. P., Weijers P. J., Fase-Fowler F., Van den Berg M. DNA circles with cruciforms from Isospora (Toxoplasma) gondii. Biochim Biophys Acta. 1984 Feb 24;781(1-2):100–111. doi: 10.1016/0167-4781(84)90128-3. [DOI] [PubMed] [Google Scholar]
- Cavalier-Smith T., Allsopp M. T., Chao E. E. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic? Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11368–11372. doi: 10.1073/pnas.91.24.11368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance M. L., Warhurst D. C., Baggaley V. C., Peters W. Preparation and characterization of DNA from rodent malarias. Trans R Soc Trop Med Hyg. 1972;66(1):3–4. doi: 10.1016/0035-9203(72)90004-1. [DOI] [PubMed] [Google Scholar]
- Chavalitshewinkoon P., de Vries E., Stam J. G., Franssen F. F., van der Vliet P. C., Overdulve J. P. Purification and characterization of DNA polymerases from Plasmodium falciparum. Mol Biochem Parasitol. 1993 Oct;61(2):243–253. doi: 10.1016/0166-6851(93)90070-e. [DOI] [PubMed] [Google Scholar]
- Colston M. J., Davis E. O. The ins and outs of protein splicing elements. Mol Microbiol. 1994 May;12(3):359–363. doi: 10.1111/j.1365-2958.1994.tb01025.x. [DOI] [PubMed] [Google Scholar]
- Colwell E. J., Hickman R. L., Intraprasert R., Tirabutana C. Minocycline and tetracycline treatment of acute falciparum malaria in Thailand. Am J Trop Med Hyg. 1972 Mar;21(2):144–149. doi: 10.4269/ajtmh.1972.21.144. [DOI] [PubMed] [Google Scholar]
- Creasey A. M., Ranford-Cartwright L. C., Moore D. J., Williamson D. H., Wilson R. J., Walliker D., Carter R. Uniparental inheritance of the mitochondrial gene cytochrome b in Plasmodium falciparum. Curr Genet. 1993;23(4):360–364. doi: 10.1007/BF00310900. [DOI] [PubMed] [Google Scholar]
- Creasey A., Mendis K., Carlton J., Williamson D., Wilson I., Carter R. Maternal inheritance of extrachromosomal DNA in malaria parasites. Mol Biochem Parasitol. 1994 May;65(1):95–98. doi: 10.1016/0166-6851(94)90118-x. [DOI] [PubMed] [Google Scholar]
- Crofts A., Hacker B., Barquera B., Yun C. H., Gennis R. Structure and function of the bc-complex of Rhodobacter sphaeroides. Biochim Biophys Acta. 1992 Jul 17;1101(2):162–165. [PubMed] [Google Scholar]
- Dore E., Frontali C., Forte T., Fratarcangeli S. Further studies and electron microscopic characterization of Plasmodium berghei DNA. Mol Biochem Parasitol. 1983 Aug;8(4):339–352. doi: 10.1016/0166-6851(83)90080-4. [DOI] [PubMed] [Google Scholar]
- Egea N., Lang-Unnasch N. Phylogeny of the large extrachromosomal DNA of organisms in the phylum Apicomplexa. J Eukaryot Microbiol. 1995 Nov-Dec;42(6):679–684. doi: 10.1111/j.1550-7408.1995.tb01615.x. [DOI] [PubMed] [Google Scholar]
- Escalante A. A., Ayala F. J. Evolutionary origin of Plasmodium and other Apicomplexa based on rRNA genes. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5793–5797. doi: 10.1073/pnas.92.13.5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escalante A. A., Ayala F. J. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11373–11377. doi: 10.1073/pnas.91.24.11373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evrard J. L., Kuntz M., Straus N. A., Weil J. H. A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxa: phylogenetic relationship between cyanelles and plant chloroplasts. Gene. 1988 Nov 15;71(1):115–122. doi: 10.1016/0378-1119(88)90083-2. [DOI] [PubMed] [Google Scholar]
- Feagin J. E., Drew M. E. Plasmodium falciparum: alterations in organelle transcript abundance during the erythrocytic cycle. Exp Parasitol. 1995 May;80(3):430–440. doi: 10.1006/expr.1995.1055. [DOI] [PubMed] [Google Scholar]
- Feagin J. E., Gardner M. J., Williamson D. H., Wilson R. J. The putative mitochondrial genome of Plasmodium falciparum. J Protozool. 1991 May-Jun;38(3):243–245. doi: 10.1111/j.1550-7408.1991.tb04436.x. [DOI] [PubMed] [Google Scholar]
- Feagin J. E. The 6-kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol. 1992 May;52(1):145–148. doi: 10.1016/0166-6851(92)90046-m. [DOI] [PubMed] [Google Scholar]
- Feagin J. E. The extrachromosomal DNAs of apicomplexan parasites. Annu Rev Microbiol. 1994;48:81–104. doi: 10.1146/annurev.mi.48.100194.000501. [DOI] [PubMed] [Google Scholar]
- Feagin J. E., Werner E., Gardner M. J., Williamson D. H., Wilson R. J. Homologies between the contiguous and fragmented rRNAs of the two Plasmodium falciparum extrachromosomal DNAs are limited to core sequences. Nucleic Acids Res. 1992 Feb 25;20(4):879–887. doi: 10.1093/nar/20.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fichera M. E., Bhopale M. K., Roos D. S. In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents Chemother. 1995 Jul;39(7):1530–1537. doi: 10.1128/aac.39.7.1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry M., Beesley J. E. Mitochondria of mammalian Plasmodium spp. Parasitology. 1991 Feb;102(Pt 1):17–26. doi: 10.1017/s0031182000060297. [DOI] [PubMed] [Google Scholar]
- Fukuhara H., Sor F., Drissi R., Dinouël N., Miyakawa I., Rousset S., Viola A. M. Linear mitochondrial DNAs of yeasts: frequency of occurrence and general features. Mol Cell Biol. 1993 Apr;13(4):2309–2314. doi: 10.1128/mcb.13.4.2309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gajadhar A. A., Marquardt W. C., Hall R., Gunderson J., Ariztia-Carmona E. V., Sogin M. L. Ribosomal RNA sequences of Sarcocystis muris, Theileria annulata and Crypthecodinium cohnii reveal evolutionary relationships among apicomplexans, dinoflagellates, and ciliates. Mol Biochem Parasitol. 1991 Mar;45(1):147–154. doi: 10.1016/0166-6851(91)90036-6. [DOI] [PubMed] [Google Scholar]
- Gardner M. J., Bates P. A., Ling I. T., Moore D. J., McCready S., Gunasekera M. B., Wilson R. J., Williamson D. H. Mitochondrial DNA of the human malarial parasite Plasmodium falciparum. Mol Biochem Parasitol. 1988 Oct;31(1):11–17. doi: 10.1016/0166-6851(88)90140-5. [DOI] [PubMed] [Google Scholar]
- Gardner M. J., Feagin J. E., Moore D. J., Rangachari K., Williamson D. H., Wilson R. J. Sequence and organization of large subunit rRNA genes from the extrachromosomal 35 kb circular DNA of the malaria parasite Plasmodium falciparum. Nucleic Acids Res. 1993 Mar 11;21(5):1067–1071. doi: 10.1093/nar/21.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner M. J., Feagin J. E., Moore D. J., Spencer D. F., Gray M. W., Williamson D. H., Wilson R. J. Organisation and expression of small subunit ribosomal RNA genes encoded by a 35-kilobase circular DNA in Plasmodium falciparum. Mol Biochem Parasitol. 1991 Sep;48(1):77–88. doi: 10.1016/0166-6851(91)90166-4. [DOI] [PubMed] [Google Scholar]
- Gardner M. J., Goldman N., Barnett P., Moore P. W., Rangachari K., Strath M., Whyte A., Williamson D. H., Wilson R. J. Phylogenetic analysis of the rpoB gene from the plastid-like DNA of Plasmodium falciparum. Mol Biochem Parasitol. 1994 Aug;66(2):221–231. doi: 10.1016/0166-6851(94)90149-x. [DOI] [PubMed] [Google Scholar]
- Gardner M. J., Preiser P., Rangachari K., Moore D., Feagin J. E., Williamson D. H., Wilson R. J. Nine duplicated tRNA genes on the plastid-like DNA of the malaria parasite Plasmodium falciparum. Gene. 1994 Jul 8;144(2):307–308. doi: 10.1016/0378-1119(94)90395-6. [DOI] [PubMed] [Google Scholar]
- Gardner M. J., Williamson D. H., Wilson R. J. A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem Parasitol. 1991 Jan;44(1):115–123. doi: 10.1016/0166-6851(91)90227-w. [DOI] [PubMed] [Google Scholar]
- Geary T. G., Jensen J. B. Effects of antibiotics on Plasmodium falciparum in vitro. Am J Trop Med Hyg. 1983 Mar;32(2):221–225. doi: 10.4269/ajtmh.1983.32.221. [DOI] [PubMed] [Google Scholar]
- Gibbs S. P. The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci. 1981;361:193–208. doi: 10.1111/j.1749-6632.1981.tb46519.x. [DOI] [PubMed] [Google Scholar]
- Gozar M. M., Bagnara A. S. An organelle-like small subunit ribosomal RNA gene from Babesia bovis: nucleotide sequence, secondary structure of the transcript and preliminary phylogenetic analysis. Int J Parasitol. 1995 Aug;25(8):929–938. doi: 10.1016/0020-7519(95)00022-t. [DOI] [PubMed] [Google Scholar]
- Gray M. W., Boer P. H. Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond B Biol Sci. 1988 May 31;319(1193):135–147. doi: 10.1098/rstb.1988.0038. [DOI] [PubMed] [Google Scholar]
- Gray M. W. The endosymbiont hypothesis revisited. Int Rev Cytol. 1992;141:233–357. doi: 10.1016/s0074-7696(08)62068-9. [DOI] [PubMed] [Google Scholar]
- Gritzmacher C. A., Reese R. T. Protein and nucleic acid synthesis during synchronized growth of Plasmodium falciparum. J Bacteriol. 1984 Dec;160(3):1165–1167. doi: 10.1128/jb.160.3.1165-1167.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge W. E., Trigg P. I., Williamson D. H. Properties of DNA from some malarial parasites. Parasitology. 1971 Apr;62(2):209–219. doi: 10.1017/s0031182000071456. [DOI] [PubMed] [Google Scholar]
- Hackstein J. H., Mackenstedt U., Mehlhorn H., Meijerink J. P., Schubert H., Leunissen J. A. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol Res. 1995;81(3):207–216. doi: 10.1007/BF00937111. [DOI] [PubMed] [Google Scholar]
- Hall R., Coggins L., McKellar S., Shiels B., Tait A. Characterisation of an extrachromosomal DNA element from Theileria annulata. Mol Biochem Parasitol. 1990 Jan 15;38(2):253–260. doi: 10.1016/0166-6851(90)90028-k. [DOI] [PubMed] [Google Scholar]
- Hallick R. B., Hong L., Drager R. G., Favreau M. R., Monfort A., Orsat B., Spielmann A., Stutz E. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res. 1993 Jul 25;21(15):3537–3544. doi: 10.1093/nar/21.15.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Han Z., Stachow C. Analysis of Schizosaccharomyces pombe mitochondrial DNA replication by two dimensional gel electrophoresis. Chromosoma. 1994 Jun;103(3):162–170. doi: 10.1007/BF00368008. [DOI] [PubMed] [Google Scholar]
- Harris E. H., Boynton J. E., Gillham N. W. Chloroplast ribosomes and protein synthesis. Microbiol Rev. 1994 Dec;58(4):700–754. doi: 10.1128/mr.58.4.700-754.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howe C. J. Plastid origin of an extrachromosomal DNA molecule from Plasmodium, the causative agent of malaria. J Theor Biol. 1992 Sep 21;158(2):199–205. doi: 10.1016/s0022-5193(05)80718-0. [DOI] [PubMed] [Google Scholar]
- Hudson G. S., Holton T. A., Whitfield P. R., Bottomley W. Spinach chloroplast rpoBC genes encode three subunits of the chloroplast RNA polymerase. J Mol Biol. 1988 Apr 20;200(4):639–654. doi: 10.1016/0022-2836(88)90477-9. [DOI] [PubMed] [Google Scholar]
- Inselburg J., Banyal H. S. Synthesis of DNA during the asexual cycle of Plasmodium falciparum in culture. Mol Biochem Parasitol. 1984 Jan;10(1):79–87. doi: 10.1016/0166-6851(84)90020-3. [DOI] [PubMed] [Google Scholar]
- Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
- Jackson M. J., McArdle A., Edwards R. H., Jones D. A. Muscle damage in mdx mice. Nature. 1991 Apr 25;350(6320):664–664. doi: 10.1038/350664b0. [DOI] [PubMed] [Google Scholar]
- Jasmer D. P., Reduker D. W., Goff W. L., Stiller D., McGuire T. C. DNA probes distinguish geographical isolates and identify a novel DNA molecule of Babesia bovis. J Parasitol. 1990 Dec;76(6):834–841. [PubMed] [Google Scholar]
- Joseph J. T., Aldritt S. M., Unnasch T., Puijalon O., Wirth D. F. Characterization of a conserved extrachromosomal element isolated from the avian malarial parasite Plasmodium gallinaceum. Mol Cell Biol. 1989 Sep;9(9):3621–3629. doi: 10.1128/mcb.9.9.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kairo A., Fairlamb A. H., Gobright E., Nene V. A 7.1 kb linear DNA molecule of Theileria parva has scrambled rDNA sequences and open reading frames for mitochondrially encoded proteins. EMBO J. 1994 Feb 15;13(4):898–905. doi: 10.1002/j.1460-2075.1994.tb06333.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilejian A. Circular mitochondrial DNA from the avian malarial parasite Plasmodium lophurae. Biochim Biophys Acta. 1975 May 16;390(3):276–284. doi: 10.1016/0005-2787(75)90348-2. [DOI] [PubMed] [Google Scholar]
- Kilejian A. Spherical bodies. Parasitol Today. 1991 Nov;7(11):309–309. doi: 10.1016/0169-4758(91)90265-p. [DOI] [PubMed] [Google Scholar]
- Kostrzewa M., Zetsche K. Large ATP synthase operon of the red alga Antithamnion sp. resembles the corresponding operon in cyanobacteria. J Mol Biol. 1992 Oct 5;227(3):961–970. doi: 10.1016/0022-2836(92)90238-f. [DOI] [PubMed] [Google Scholar]
- Lapadat M. A., Deerfield D. W., 2nd, Pedersen L. G., Spremulli L. L. Generation of potential structures for the G-domain of chloroplast EF-Tu using comparative molecular modeling. Proteins. 1990;8(3):237–250. doi: 10.1002/prot.340080306. [DOI] [PubMed] [Google Scholar]
- Levine N. D. Progress in taxonomy of the Apicomplexan protozoa. J Protozool. 1988 Nov;35(4):518–520. doi: 10.1111/j.1550-7408.1988.tb04141.x. [DOI] [PubMed] [Google Scholar]
- Lockhart P. J., Howe C. J., Bryant D. A., Beanland T. J., Larkum A. W. Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol. 1992 Feb;34(2):153–162. doi: 10.1007/BF00182392. [DOI] [PubMed] [Google Scholar]
- Maleszka R., Clark-Walker G. D. In vivo conformation of mitochondrial DNA in fungi and zoosporic moulds. Curr Genet. 1992 Oct;22(4):341–344. doi: 10.1007/BF00317933. [DOI] [PubMed] [Google Scholar]
- Maleszka R., Skelly P. J., Clark-Walker G. D. Rolling circle replication of DNA in yeast mitochondria. EMBO J. 1991 Dec;10(12):3923–3929. doi: 10.1002/j.1460-2075.1991.tb04962.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFadden G. I., Reith M. E., Munholland J., Lang-Unnasch N. Plastid in human parasites. Nature. 1996 Jun 6;381(6582):482–482. doi: 10.1038/381482a0. [DOI] [PubMed] [Google Scholar]
- Megson A., Inman G. J., Hunt P. D., Baylis H. A., Hall R. The gene for apocytochrome B of Theileria annulata resides on a small linear extrachromosomal element. Mol Biochem Parasitol. 1991 Sep;48(1):113–115. doi: 10.1016/0166-6851(91)90171-2. [DOI] [PubMed] [Google Scholar]
- Nobrega F. G., Tzagoloff A. Assembly of the mitochondrial membrane system. DNA sequence and organization of the cytochrome b gene in Saccharomyces cerevisiae D273-10B. J Biol Chem. 1980 Oct 25;255(20):9828–9837. [PubMed] [Google Scholar]
- Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
- Ohyama K., Fukuzawa H., Kohchi T., Sano T., Sano S., Shirai H., Umesono K., Shiki Y., Takeuchi M., Chang Z. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. J Mol Biol. 1988 Sep 20;203(2):281–298. doi: 10.1016/0022-2836(88)90001-0. [DOI] [PubMed] [Google Scholar]
- Olliaro P., Gorini G., Jabes D., Regazzetti A., Rossi R., Marchetti A., Tinelli C., Della Bruna C. In-vitro and in-vivo activity of rifabutin against Toxoplasma gondii. J Antimicrob Chemother. 1994 Nov;34(5):649–657. doi: 10.1093/jac/34.5.649. [DOI] [PubMed] [Google Scholar]
- Ossorio P. N., Sibley L. D., Boothroyd J. C. Mitochondrial-like DNA sequences flanked by direct and inverted repeats in the nuclear genome of Toxoplasma gondii. J Mol Biol. 1991 Dec 5;222(3):525–536. doi: 10.1016/0022-2836(91)90494-q. [DOI] [PubMed] [Google Scholar]
- Palmer J. D., Delwiche C. F. Second-hand chloroplasts and the case of the disappearing nucleus. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7432–7435. doi: 10.1073/pnas.93.15.7432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer J. D. Rubisco rules fall; gene transfer triumphs. Bioessays. 1995 Dec;17(12):1005–1008. doi: 10.1002/bies.950171202. [DOI] [PubMed] [Google Scholar]
- Parsell D. A., Kowal A. S., Singer M. A., Lindquist S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature. 1994 Dec 1;372(6505):475–478. doi: 10.1038/372475a0. [DOI] [PubMed] [Google Scholar]
- Pfefferkorn E. R., Borotz S. E. Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin. Antimicrob Agents Chemother. 1994 Jan;38(1):31–37. doi: 10.1128/aac.38.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pietrokovski S. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 1994 Dec;3(12):2340–2350. doi: 10.1002/pro.5560031218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prapunwattana P., O'Sullivan W. J., Yuthavong Y. Depression of Plasmodium falciparum dihydroorotate dehydrogenase activity in in vitro culture by tetracycline. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):119–124. doi: 10.1016/0166-6851(88)90031-x. [DOI] [PubMed] [Google Scholar]
- Preiser P. R., Wilson R. J., Moore P. W., McCready S., Hajibagheri M. A., Blight K. J., Strath M., Williamson D. H. Recombination associated with replication of malarial mitochondrial DNA. EMBO J. 1996 Feb 1;15(3):684–693. [PMC free article] [PubMed] [Google Scholar]
- Preiser P., Williamson D. H., Wilson R. J. tRNA genes transcribed from the plastid-like DNA of Plasmodium falciparum. Nucleic Acids Res. 1995 Nov 11;23(21):4329–4336. doi: 10.1093/nar/23.21.4329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pukrittayakamee S., Viravan C., Charoenlarp P., Yeamput C., Wilson R. J., White N. J. Antimalarial effects of rifampin in Plasmodium vivax malaria. Antimicrob Agents Chemother. 1994 Mar;38(3):511–514. doi: 10.1128/aac.38.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Read M., Hicks K. E., Sims P. F., Hyde J. E. Molecular characterisation of the enolase gene from the human malaria parasite Plasmodium falciparum. Evidence for ancestry within a photosynthetic lineage. Eur J Biochem. 1994 Mar 1;220(2):513–520. doi: 10.1111/j.1432-1033.1994.tb18650.x. [DOI] [PubMed] [Google Scholar]
- Robson K. J., Gamble Y., Acharya K. R. Molecular modelling of malaria calmodulin suggests that it is not a suitable target for novel antimalarials. Philos Trans R Soc Lond B Biol Sci. 1993 Apr 29;340(1291):39–53. doi: 10.1098/rstb.1993.0047. [DOI] [PubMed] [Google Scholar]
- Rosendahl G., Douthwaite S. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res. 1994 Feb 11;22(3):357–363. doi: 10.1093/nar/22.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan P. C., Lu M., Draper D. E. Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol. 1991 Oct 20;221(4):1257–1268. doi: 10.1016/0022-2836(91)90932-v. [DOI] [PubMed] [Google Scholar]
- Schelp C., Böse R., Friedhoff K. T. Demonstration of extrachromosomal DNA from Babesia equi merozoites. Parasitol Res. 1992;78(8):707–708. doi: 10.1007/BF00931526. [DOI] [PubMed] [Google Scholar]
- Schnare M. N., Gray M. W. Sixteen discrete RNA components in the cytoplasmic ribosome of Euglena gracilis. J Mol Biol. 1990 Sep 5;215(1):73–83. doi: 10.1016/S0022-2836(05)80096-8. [DOI] [PubMed] [Google Scholar]
- Scholtyseck E., Mehlhorn H., Hammond D. M. Electron microscope studies of microgametogenesis in Coccidia and related groups. Z Parasitenkd. 1972;38(2):95–131. doi: 10.1007/BF00329023. [DOI] [PubMed] [Google Scholar]
- Sena E. P., Revet B., Moustacchi E. In vivo homologous recombination intermediates of yeast mitochondrial DNA analyzed by electron microscopy. Mol Gen Genet. 1986 Mar;202(3):421–428. doi: 10.1007/BF00333272. [DOI] [PubMed] [Google Scholar]
- Siddall M. E. Hohlzylinders. Parasitol Today. 1992 Mar;8(3):90–91. doi: 10.1016/0169-4758(92)90244-v. [DOI] [PubMed] [Google Scholar]
- Smeijsters L. J., Zijlstra N. M., de Vries E., Franssen F. F., Janse C. J., Overdulve J. P. The effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl) adenine on nuclear and organellar DNA synthesis in erythrocytic schizogony in malaria. Mol Biochem Parasitol. 1994 Sep;67(1):115–124. doi: 10.1016/0166-6851(94)90101-5. [DOI] [PubMed] [Google Scholar]
- Strath M., Scott-Finnigan T., Gardner M., Williamson D., Wilson I. Antimalarial activity of rifampicin in vitro and in rodent models. Trans R Soc Trop Med Hyg. 1993 Mar-Apr;87(2):211–216. doi: 10.1016/0035-9203(93)90497-e. [DOI] [PubMed] [Google Scholar]
- Suplick K., Morrisey J., Vaidya A. B. Complex transcription from the extrachromosomal DNA encoding mitochondrial functions of Plasmodium yoelii. Mol Cell Biol. 1990 Dec;10(12):6381–6388. doi: 10.1128/mcb.10.12.6381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surolia N., Padmanaban G. de novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem Biophys Res Commun. 1992 Sep 16;187(2):744–750. doi: 10.1016/0006-291x(92)91258-r. [DOI] [PubMed] [Google Scholar]
- Thatcher T. H., Gorovsky M. A. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res. 1994 Jan 25;22(2):174–179. doi: 10.1093/nar/22.2.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson J., Cundliffe E., Dahlberg A. E. Site-directed mutagenesis of Escherichia coli 23 S ribosomal RNA at position 1067 within the GTP hydrolysis centre. J Mol Biol. 1988 Sep 20;203(2):457–465. doi: 10.1016/0022-2836(88)90012-5. [DOI] [PubMed] [Google Scholar]
- Tomavo S., Boothroyd J. C. Interconnection between organellar functions, development and drug resistance in the protozoan parasite, Toxoplasma gondii. Int J Parasitol. 1995 Nov;25(11):1293–1299. doi: 10.1016/0020-7519(95)00066-b. [DOI] [PubMed] [Google Scholar]
- Vaidya A. B., Akella R., Suplick K. Sequences similar to genes for two mitochondrial proteins and portions of ribosomal RNA in tandemly arrayed 6-kilobase-pair DNA of a malarial parasite. Mol Biochem Parasitol. 1989 Jun 15;35(2):97–107. doi: 10.1016/0166-6851(89)90112-6. [DOI] [PubMed] [Google Scholar]
- Vaidya A. B., Arasu P. Tandemly arranged gene clusters of malarial parasites that are highly conserved and transcribed. Mol Biochem Parasitol. 1987 Jan 15;22(2-3):249–257. doi: 10.1016/0166-6851(87)90056-9. [DOI] [PubMed] [Google Scholar]
- Vaidya A. B., Lashgari M. S., Pologe L. G., Morrisey J. Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol. 1993 Mar;58(1):33–42. doi: 10.1016/0166-6851(93)90088-f. [DOI] [PubMed] [Google Scholar]
- Vaidya A. B., Morrisey J., Plowe C. V., Kaslow D. C., Wellems T. E. Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. Mol Cell Biol. 1993 Dec;13(12):7349–7357. doi: 10.1128/mcb.13.12.7349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van de Peer Y., Rensing S. A., Maier U. G., De Wachter R. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7732–7736. doi: 10.1073/pnas.93.15.7732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van de Peer Y., Van der Auwera G., De Wachter R. The evolution of stramenopiles and alveolates as derived by "substitution rate calibration" of small ribosomal subunit RNA. J Mol Evol. 1996 Feb;42(2):201–210. doi: 10.1007/BF02198846. [DOI] [PubMed] [Google Scholar]
- Vogel J. L., Parsell D. A., Lindquist S. Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol. 1995 Mar 1;5(3):306–317. doi: 10.1016/s0960-9822(95)00061-3. [DOI] [PubMed] [Google Scholar]
- Waters A. P., White W., McCutchan T. F. The structure of the large subunit rRNA expressed in blood stages of Plasmodium falciparum. Mol Biochem Parasitol. 1995 Jun;72(1-2):227–237. doi: 10.1016/0166-6851(94)00077-z. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Fennell D. J. Apparent dispersive replication of yeast mitochondrial DNA as revealed by density labelling experiments. Mol Gen Genet. 1974;131(3):193–207. doi: 10.1007/BF00267959. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Gardner M. J., Preiser P., Moore D. J., Rangachari K., Wilson R. J. The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet. 1994 Apr;243(2):249–252. doi: 10.1007/BF00280323. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Preiser P. R., Wilson R. J. Organelle DNAs: The bit players in malaria parasite DNA replication. Parasitol Today. 1996 Sep;12(9):357–362. doi: 10.1016/0169-4758(96)10053-3. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Wilson R. J., Bates P. A., McCready S., Perler F., Qiang B. U. Nuclear and mitochondrial DNA of the primate malarial parasite Plasmodium knowlesi. Mol Biochem Parasitol. 1985 Feb;14(2):199–209. doi: 10.1016/0166-6851(85)90038-6. [DOI] [PubMed] [Google Scholar]
- Wilson R. J., Denny P. W., Preiser P. R., Rangachari K., Roberts K., Roy A., Whyte A., Strath M., Moore D. J., Moore P. W. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol. 1996 Aug 16;261(2):155–172. doi: 10.1006/jmbi.1996.0449. [DOI] [PubMed] [Google Scholar]
- Wilson R. J., Fry M., Gardner M. J., Feagin J. E., Williamson D. H. Subcellular fractionation of the two organelle DNAs of malaria parasites. Curr Genet. 1992 Apr;21(4-5):405–408. doi: 10.1007/BF00351702. [DOI] [PubMed] [Google Scholar]
- Wilson R. J., Williamson D. H., Preiser P. Malaria and other Apicomplexans: the "plant" connection. Infect Agents Dis. 1994 Feb;3(1):29–37. [PubMed] [Google Scholar]
- Wolfe K. H., Morden C. W., Palmer J. D. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10648–10652. doi: 10.1073/pnas.89.22.10648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Rojas M. O., Wasserman M. Temporal relationships on macromolecular synthesis during the asexual cell cycle of Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1985;79(6):792–796. doi: 10.1016/0035-9203(85)90119-1. [DOI] [PubMed] [Google Scholar]