Skip to main content
Microbiology and Molecular Biology Reviews : MMBR logoLink to Microbiology and Molecular Biology Reviews : MMBR
. 1997 Mar;61(1):47–64. doi: 10.1128/mmbr.61.1.47-64.1997

Microbial production of surfactants and their commercial potential.

J D Desai 1, I M Banat 1
PMCID: PMC232600  PMID: 9106364

Abstract

Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed.

Full Text

The Full Text of this article is available as a PDF (199.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arima K., Kakinuma A., Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun. 1968 May 10;31(3):488–494. doi: 10.1016/0006-291x(68)90503-2. [DOI] [PubMed] [Google Scholar]
  2. Asselineau C., Asselineau J. Trehalose-containing glycolipids. Prog Chem Fats Other Lipids. 1978;16:59–99. doi: 10.1016/0079-6832(78)90037-x. [DOI] [PubMed] [Google Scholar]
  3. BOOTHROYD B., THORN J. A., HASKINS R. H. Biochemistry of the ustilaginales. XII. Characterization of extracellular glycolipids produced by Ustilago sp. Can J Biochem Physiol. 1956 Jan;34(1):10–14. [PubMed] [Google Scholar]
  4. Bar-Ness R., Avrahamy N., Matsuyama T., Rosenberg M. Increased cell surface hydrophobicity of a Serratia marcescens NS 38 mutant lacking wetting activity. J Bacteriol. 1988 Sep;170(9):4361–4364. doi: 10.1128/jb.170.9.4361-4364.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bar-Ness R., Rosenberg M. Putative role of a 70 kDa outer-surface protein in promoting cell-surface hydrophobicity of Serratia marcescens RZ. J Gen Microbiol. 1989 Aug;135(8):2277–2281. doi: 10.1099/00221287-135-8-2277. [DOI] [PubMed] [Google Scholar]
  6. Beebe J. L., Umbreit W. W. Extracellular lipid of Thiobacillus thiooxidans. J Bacteriol. 1971 Oct;108(1):612–614. doi: 10.1128/jb.108.1.612-614.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Belsky I., Gutnick D. L., Rosenberg E. Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett. 1979 May 1;101(1):175–178. doi: 10.1016/0014-5793(79)81320-4. [DOI] [PubMed] [Google Scholar]
  8. Bernheimer A. W., Avigad L. S. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J Gen Microbiol. 1970 Jun;61(3):361–369. doi: 10.1099/00221287-61-3-361. [DOI] [PubMed] [Google Scholar]
  9. Bertrand J. C., Bonin P., Goutx M., Gauthier M., Mille G. The potential application of biosurfactants in combatting hydrocarbon pollution in marine environments. Res Microbiol. 1994 Jan;145(1):53–56. doi: 10.1016/0923-2508(94)90070-1. [DOI] [PubMed] [Google Scholar]
  10. Brennan P. J., Lehane D. P., Thomas D. W. Acylglucoses of the corynebacteria and mycobacteria. Eur J Biochem. 1970 Mar 1;13(1):117–123. doi: 10.1111/j.1432-1033.1970.tb00906.x. [DOI] [PubMed] [Google Scholar]
  11. Bryant F. O. Improved Method for the Isolation of Biosurfactant Glycolipids from Rhodococcus sp. Strain H13A. Appl Environ Microbiol. 1990 May;56(5):1494–1496. doi: 10.1128/aem.56.5.1494-1496.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cairns W. L., Cooper D. G., Zajic J. E., Wood J. M., Kosaric N. Characterization of Nocardia amarae as a Potent Biological Coalescing Agent of Water-Oil Emulsions. Appl Environ Microbiol. 1982 Feb;43(2):362–366. doi: 10.1128/aem.43.2.362-366.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cameron D. R., Cooper D. G., Neufeld R. J. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol. 1988 Jun;54(6):1420–1425. doi: 10.1128/aem.54.6.1420-1425.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chung W. S., Choi H. K. Erotic erection versus nocturnal erection. J Urol. 1990 Feb;143(2):294–297. doi: 10.1016/s0022-5347(17)39937-8. [DOI] [PubMed] [Google Scholar]
  15. Cirigliano M. C., Carman G. M. Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol. 1984 Oct;48(4):747–750. doi: 10.1128/aem.48.4.747-750.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cirigliano M. C., Carman G. M. Purification and Characterization of Liposan, a Bioemulsifier from Candida lipolytica. Appl Environ Microbiol. 1985 Oct;50(4):846–850. doi: 10.1128/aem.50.4.846-850.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cooper D. G. Biosurfactants. Microbiol Sci. 1986 May;3(5):145–149. [PubMed] [Google Scholar]
  18. Cooper D. G., Goldenberg B. G. Surface-active agents from two bacillus species. Appl Environ Microbiol. 1987 Feb;53(2):224–229. doi: 10.1128/aem.53.2.224-229.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cooper D. G., Macdonald C. R., Duff S. J., Kosaric N. Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions. Appl Environ Microbiol. 1981 Sep;42(3):408–412. doi: 10.1128/aem.42.3.408-412.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cooper D. G., Paddock D. A. Production of a Biosurfactant from Torulopsis bombicola. Appl Environ Microbiol. 1984 Jan;47(1):173–176. doi: 10.1128/aem.47.1.173-176.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cooper D. G., Paddock D. A. Torulopsis petrophilum and Surface Activity. Appl Environ Microbiol. 1983 Dec;46(6):1426–1429. doi: 10.1128/aem.46.6.1426-1429.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cooper D. G., Zajic J. E., Gerson D. F. Production of surface-active lipids by Corynebacterium lepus. Appl Environ Microbiol. 1979 Jan;37(1):4–10. doi: 10.1128/aem.37.1.4-10.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cutler A. J., Light R. J. Regulation of hydroxydocosanoic acid sophoroside production in Candida bogoriensis by the levels of glucose and yeast extract in the growth medium. J Biol Chem. 1979 Mar 25;254(6):1944–1950. [PubMed] [Google Scholar]
  24. Deziel E., Paquette G., Villemur R., Lepine F., Bisaillon J. Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol. 1996 Jun;62(6):1908–1912. doi: 10.1128/aem.62.6.1908-1912.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Edmonds P., Cooney J. J. Lipids of Pseudomonas aeruginosa cells grown on hydrocarbons and on trypticase soy broth. J Bacteriol. 1969 Apr;98(1):16–22. doi: 10.1128/jb.98.1.16-22.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Edwards J. R., Hayashi J. A. Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch Biochem Biophys. 1965 Aug;111(2):415–421. doi: 10.1016/0003-9861(65)90204-3. [DOI] [PubMed] [Google Scholar]
  27. Fiechter A. Biosurfactants: moving towards industrial application. Trends Biotechnol. 1992 Jun;10(6):208–217. doi: 10.1016/0167-7799(92)90215-h. [DOI] [PubMed] [Google Scholar]
  28. Georgiou G., Lin S. C., Sharma M. M. Surface-active compounds from microorganisms. Biotechnology (N Y) 1992 Jan;10(1):60–65. doi: 10.1038/nbt0192-60. [DOI] [PubMed] [Google Scholar]
  29. Goldman S., Shabtai Y., Rubinovitz C., Rosenberg E., Gutnick D. L. Emulsan in Acinetobacter calcoaceticus RAG-1: Distribution of Cell-Free and Cell-Associated Cross-Reacting Material. Appl Environ Microbiol. 1982 Jul;44(1):165–170. doi: 10.1128/aem.44.1.165-170.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Guerra-Santos L., Käppeli O., Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol. 1984 Aug;48(2):301–305. doi: 10.1128/aem.48.2.301-305.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. HAUSER G., KARNOVSKY M. L. Studies on the biosynthesis of L-rhammose. J Biol Chem. 1958 Aug;233(2):287–291. [PubMed] [Google Scholar]
  32. HAUSER G., KARNOVSKY M. L. Studies on the production of glycolipide by Pseudomonas aeruginosa. J Bacteriol. 1954 Dec;68(6):645–654. doi: 10.1128/jb.68.6.645-654.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hardegger M., Koch A. K., Ochsner U. A., Fiechter A., Reiser J. Cloning and heterologous expression of a gene encoding an alkane-induced extracellular protein involved in alkane assimilation from Pseudomonas aeruginosa. Appl Environ Microbiol. 1994 Oct;60(10):3679–3687. doi: 10.1128/aem.60.10.3679-3687.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Harvey S., Elashvili I., Valdes J. J., Kamely D., Chakrabarty A. M. Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Biotechnology (N Y) 1990 Mar;8(3):228–230. doi: 10.1038/nbt0390-228. [DOI] [PubMed] [Google Scholar]
  35. Horowitz S., Griffin W. M. Structural analysis of Bacillus licheniformis 86 surfactant. J Ind Microbiol. 1991 Jan;7(1):45–52. doi: 10.1007/BF01575602. [DOI] [PubMed] [Google Scholar]
  36. Ito S., Honda H., Tomita F., Suzuki T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C 12 , C 13 and C 14 fractions). J Antibiot (Tokyo) 1971 Dec;24(12):855–859. doi: 10.7164/antibiotics.24.855. [DOI] [PubMed] [Google Scholar]
  37. Ito S., Inoue S. Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl Environ Microbiol. 1982 Jun;43(6):1278–1283. doi: 10.1128/aem.43.6.1278-1283.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Javaheri M., Jenneman G. E., McInerney M. J., Knapp R. M. Anaerobic Production of a Biosurfactant by Bacillus licheniformis JF-2. Appl Environ Microbiol. 1985 Sep;50(3):698–700. doi: 10.1128/aem.50.3.698-700.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Kluge B., Vater J., Salnikow J., Eckart K. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett. 1988 Apr 11;231(1):107–110. doi: 10.1016/0014-5793(88)80712-9. [DOI] [PubMed] [Google Scholar]
  40. Knoche H. W., Shively J. M. The structure of an ornithine-containing lipid from Thiobacillus thiooxidans. J Biol Chem. 1972 Jan 10;247(1):170–178. [PubMed] [Google Scholar]
  41. Koch A. K., Käppeli O., Fiechter A., Reiser J. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol. 1991 Jul;173(13):4212–4219. doi: 10.1128/jb.173.13.4212-4219.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Koronelli T. V., Komarova T. I., Denisov Iu V. Khimicheskii sostav i rol' peptidoglikolipida Pseudomonas aeruginosa v protsesse usvoeniia uglevodorodov. Mikrobiologiia. 1983 Sep-Oct;52(5):767–770. [PubMed] [Google Scholar]
  43. Kretschmer A., Bock H., Wagner F. Chemical and Physical Characterization of Interfacial-Active Lipids from Rhodococcus erythropolis Grown on n-Alkanes. Appl Environ Microbiol. 1982 Oct;44(4):864–870. doi: 10.1128/aem.44.4.864-870.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Käppeli O., Fiechter A. Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J Bacteriol. 1977 Sep;131(3):917–921. doi: 10.1128/jb.131.3.917-921.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Käppeli O., Finnerty W. R. Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol. 1979 Nov;140(2):707–712. doi: 10.1128/jb.140.2.707-712.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Käppeli O., Müller M., Fiechter A. Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate. J Bacteriol. 1978 Feb;133(2):952–958. doi: 10.1128/jb.133.2.952-958.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Käppeli O., Walther P., Mueller M., Fiechter A. Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol. 1984 Aug;138(4):279–282. doi: 10.1007/BF00410890. [DOI] [PubMed] [Google Scholar]
  48. Li Z. Y., Lang S., Wagner F., Witte L., Wray V. Formation and identification of interfacial-active glycolipids from resting microbial cells. Appl Environ Microbiol. 1984 Sep;48(3):610–617. doi: 10.1128/aem.48.3.610-617.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. MacElwee C. G., Lee H., Trevors J. T. Production of extracellular emulsifying agent by Pseudomonas aeruginosa UG1. J Ind Microbiol. 1990 Jan;5(1):25–31. doi: 10.1007/BF01569603. [DOI] [PubMed] [Google Scholar]
  50. Macdonald C. R., Cooper D. G., Zajic J. E. Surface-Active Lipids from Nocardia erythropolis Grown on Hydrocarbons. Appl Environ Microbiol. 1981 Jan;41(1):117–123. doi: 10.1128/aem.41.1.117-123.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Marahiel M. A., Danders W., Krause M., Kleinkauf H. Biological role of gramicidin S in spore functions. Studies on gramicidin-S-negative mutants of Bacillus brevis ATCC9999. Eur J Biochem. 1979 Aug 15;99(1):49–55. doi: 10.1111/j.1432-1033.1979.tb13229.x. [DOI] [PubMed] [Google Scholar]
  52. Matsuyama T., Sogawa M., Yano I. Direct Colony Thin-Layer Chromatography and Rapid Characterization of Serratia marcescens Mutants Defective in Production of Wetting Agents. Appl Environ Microbiol. 1987 May;53(5):1186–1188. doi: 10.1128/aem.53.5.1186-1188.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. McInerney M. J., Javaheri M., Nagle D. P., Jr Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. J Ind Microbiol. 1990 Apr-May;5(2-3):95–101. doi: 10.1007/BF01573858. [DOI] [PubMed] [Google Scholar]
  54. Miller R. A., Gieszczykiewicz F. M., Vries J. K., Cooper G. F. CHARTLINE: providing bibliographic references relevant to patient charts using the UMLS Metathesaurus Knowledge Sources. Proc Annu Symp Comput Appl Med Care. 1992:86–90. [PMC free article] [PubMed] [Google Scholar]
  55. Miller R. M. Biosurfactant-facilitated remediation of metal-contaminated soils. Environ Health Perspect. 1995 Feb;103 (Suppl 1):59–62. doi: 10.1289/ehp.95103s159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Mulligan C. N., Cooper D. G. Pressate from peat dewatering as a substrate for bacterial growth. Appl Environ Microbiol. 1985 Jul;50(1):160–162. doi: 10.1128/aem.50.1.160-162.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Mulligan C. N., Gibbs B. F. Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl Environ Microbiol. 1989 Nov;55(11):3016–3019. doi: 10.1128/aem.55.11.3016-3019.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Mulligan C. N., Gibbs B. F. Recovery of biosurfactants by ultrafiltration. J Chem Technol Biotechnol. 1990;47(1):23–29. doi: 10.1002/jctb.280470104. [DOI] [PubMed] [Google Scholar]
  59. Nakano M. M., Corbell N., Besson J., Zuber P. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet. 1992 Mar;232(2):313–321. doi: 10.1007/BF00280011. [DOI] [PubMed] [Google Scholar]
  60. Nakano M. M., Magnuson R., Myers A., Curry J., Grossman A. D., Zuber P. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol. 1991 Mar;173(5):1770–1778. doi: 10.1128/jb.173.5.1770-1778.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Nakano M. M., Marahiel M. A., Zuber P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol. 1988 Dec;170(12):5662–5668. doi: 10.1128/jb.170.12.5662-5668.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Nakano M. M., Xia L. A., Zuber P. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol. 1991 Sep;173(17):5487–5493. doi: 10.1128/jb.173.17.5487-5493.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Nakano M. M., Zuber P. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J Bacteriol. 1989 Oct;171(10):5347–5353. doi: 10.1128/jb.171.10.5347-5353.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Nakano M. M., Zuber P. Molecular biology of antibiotic production in Bacillus. Crit Rev Biotechnol. 1990;10(3):223–240. doi: 10.3109/07388559009038209. [DOI] [PubMed] [Google Scholar]
  65. Nakano M. M., Zuber P. Mutational analysis of the regulatory region of the srfA operon in Bacillus subtilis. J Bacteriol. 1993 May;175(10):3188–3191. doi: 10.1128/jb.175.10.3188-3191.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Navon-Venezia S., Zosim Z., Gottlieb A., Legmann R., Carmeli S., Ron E. Z., Rosenberg E. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol. 1995 Sep;61(9):3240–3244. doi: 10.1128/aem.61.9.3240-3244.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Oberbremer A., Müller-Hurtig R., Wagner F. Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol. 1990 Jan;32(4):485–489. doi: 10.1007/BF00903788. [DOI] [PubMed] [Google Scholar]
  68. Ochsner U. A., Fiechter A., Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem. 1994 Aug 5;269(31):19787–19795. [PubMed] [Google Scholar]
  69. Ochsner U. A., Koch A. K., Fiechter A., Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol. 1994 Apr;176(7):2044–2054. doi: 10.1128/jb.176.7.2044-2054.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Ochsner U. A., Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6424–6428. doi: 10.1073/pnas.92.14.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Ochsner U. A., Reiser J., Fiechter A., Witholt B. Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts. Appl Environ Microbiol. 1995 Sep;61(9):3503–3506. doi: 10.1128/aem.61.9.3503-3506.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Ohno T., Mizokami M., Yamauchi M., Ohba K., Orito E., Wu R. R., Mizuno M., Sugihara K., Wakita T., Kakumu S. Genotype distribution in Nagoya and new genotype (genotype 3a) in Japanese patients with hepatitis C virus. J Gastroenterol. 1995 Apr;30(2):209–214. doi: 10.1007/BF02348667. [DOI] [PubMed] [Google Scholar]
  73. Persson A., Molin G., Weibull C. Physiological and Morphological Changes Induced by Nutrient Limitation of Pseudomonas fluorescens 378 in Continuous Culture. Appl Environ Microbiol. 1990 Mar;56(3):686–692. doi: 10.1128/aem.56.3.686-692.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Pines O., Bayer E. A., Gutnick D. L. Localization of emulsan-like polymers associated with the cell surface of acinetobacter calcoaceticus. J Bacteriol. 1983 May;154(2):893–905. doi: 10.1128/jb.154.2.893-905.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Poremba K., Gunkel W., Lang S., Wagner F. Marine biosurfactants, III. Toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z Naturforsch C. 1991 Mar-Apr;46(3-4):210–216. doi: 10.1515/znc-1991-3-409. [DOI] [PubMed] [Google Scholar]
  76. Reiling H. E., Thanei-Wyss U., Guerra-Santos L. H., Hirt R., Käppeli O., Fiechter A. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol. 1986 May;51(5):985–989. doi: 10.1128/aem.51.5.985-989.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Rendell N. B., Taylor G. W., Somerville M., Todd H., Wilson R., Cole P. J. Characterisation of Pseudomonas rhamnolipids. Biochim Biophys Acta. 1990 Jul 16;1045(2):189–193. doi: 10.1016/0005-2760(90)90150-v. [DOI] [PubMed] [Google Scholar]
  78. Roggiani M., Dubnau D. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J Bacteriol. 1993 May;175(10):3182–3187. doi: 10.1128/jb.175.10.3182-3187.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Rosenberg E., Rubinovitz C., Gottlieb A., Rosenhak S., Ron E. Z. Production of Biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol. 1988 Feb;54(2):317–322. doi: 10.1128/aem.54.2.317-322.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Rosenberg E., Rubinovitz C., Legmann R., Ron E. Z. Purification and Chemical Properties of Acinetobacter calcoaceticus A2 Biodispersan. Appl Environ Microbiol. 1988 Feb;54(2):323–326. doi: 10.1128/aem.54.2.323-326.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Rosenberg E., Zuckerberg A., Rubinovitz C., Gutnick D. L. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol. 1979 Mar;37(3):402–408. doi: 10.1128/aem.37.3.402-408.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Rosenberg M., Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J Bacteriol. 1981 Oct;148(1):51–57. doi: 10.1128/jb.148.1.51-57.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Rubinovitz C., Gutnick D. L., Rosenberg E. Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. J Bacteriol. 1982 Oct;152(1):126–132. doi: 10.1128/jb.152.1.126-132.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Rusansky S., Avigad R., Michaeli S., Gutnick D. L. Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57. Appl Environ Microbiol. 1987 Aug;53(8):1918–1923. doi: 10.1128/aem.53.8.1918-1923.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. SUZUKI T., HAYASHI K., FUJIKAWA K., TSUKAMOTO K. THE CHEMICAL STRUCTURE OF POLYMYXIN E: THE IDENTITIES OF POLYMYXIN E1 WITH COLISTIN A AND OF POLYMYXIN E2 WITH COLISTIN B. J Biochem. 1965 Feb;57:226–227. doi: 10.1093/oxfordjournals.jbchem.a128082. [DOI] [PubMed] [Google Scholar]
  86. Sarney D. B., Vulfson E. N. Application of enzymes to the synthesis of surfactants. Trends Biotechnol. 1995 May;13(5):164–172. doi: 10.1016/S0167-7799(00)88933-7. [DOI] [PubMed] [Google Scholar]
  87. Schulz D., Passeri A., Schmidt M., Lang S., Wagner F., Wray V., Gunkel W. Marine biosurfactants, I. Screening for biosurfactants among crude oil degrading marine microorganisms from the North Sea. Z Naturforsch C. 1991 Mar-Apr;46(3-4):197–203. doi: 10.1515/znc-1991-3-407. [DOI] [PubMed] [Google Scholar]
  88. Shabtai Y., Gutnick D. L. Enhanced emulsan production in mutants of Acinetobacter calcoaceticus RAG-1 selected for resistance to cetyltrimethylammonium bromide. Appl Environ Microbiol. 1986 Jul;52(1):146–151. doi: 10.1128/aem.52.1.146-151.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Shabtai Y., Gutnick D. L. Tolerance of Acinetobacter calcoaceticus RAG-1 to the cationic surfactant cetyltrimethylammonium bromide: role of the bioemulsifier emulsan. Appl Environ Microbiol. 1985 Jan;49(1):192–197. doi: 10.1128/aem.49.1.192-197.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Shepherd R., Rockey J., Sutherland I. W., Roller S. Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol. 1995 Jun 21;40(3):207–217. doi: 10.1016/0168-1656(95)00053-s. [DOI] [PubMed] [Google Scholar]
  91. Sheppard J. D., Cooper D. G. The effects of a biosurfactant on oxygen transfer in a cyclone column reactor. J Chem Technol Biotechnol. 1990;48(3):325–336. doi: 10.1002/jctb.280480308. [DOI] [PubMed] [Google Scholar]
  92. Shreve G. S., Inguva S., Gunnam S. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Mol Mar Biol Biotechnol. 1995 Dec;4(4):331–337. [PubMed] [Google Scholar]
  93. Shul'ga A. N., Karpenko E. V., Eliseev S. A., Turovskii A. A. Metod opredeleniia soderzhaniia anionogennykh poverkhnostno-aktivnykh peptidolipidov bakterial'nogo proiskhozhdeniia. Mikrobiol Zh. 1993 Jan-Feb;55(1):85–88. [PubMed] [Google Scholar]
  94. Singh M., Desai J. D. Hydrocarbon emulsification by Candida tropicalis and Debaryomyces polymorphus. Indian J Exp Biol. 1989 Mar;27(3):224–226. [PubMed] [Google Scholar]
  95. Syldatk C., Lang S., Matulovic U., Wagner F. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Z Naturforsch C. 1985 Jan-Feb;40(1-2):61–67. doi: 10.1515/znc-1985-1-213. [DOI] [PubMed] [Google Scholar]
  96. Syldatk C., Lang S., Wagner F., Wray V., Witte L. Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch C. 1985 Jan-Feb;40(1-2):51–60. doi: 10.1515/znc-1985-1-212. [DOI] [PubMed] [Google Scholar]
  97. Ullrich C., Kluge B., Palacz Z., Vater J. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochemistry. 1991 Jul 2;30(26):6503–6508. doi: 10.1021/bi00240a022. [DOI] [PubMed] [Google Scholar]
  98. Van Dyke M. I., Couture P., Brauer M., Lee H., Trevors J. T. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can J Microbiol. 1993 Nov;39(11):1071–1078. doi: 10.1139/m93-162. [DOI] [PubMed] [Google Scholar]
  99. Weinrauch Y., Guillen N., Dubnau D. A. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J Bacteriol. 1989 Oct;171(10):5362–5375. doi: 10.1128/jb.171.10.5362-5375.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Wilkinson S. G., Galbrath L. Studies of lipopolysaccharides from Pseudomonas aeruginosa. Eur J Biochem. 1975 Mar 17;52(2):331–343. doi: 10.1111/j.1432-1033.1975.tb04001.x. [DOI] [PubMed] [Google Scholar]
  101. Yakimov M. M., Fredrickson H. L., Timmis K. N. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol Appl Biochem. 1996 Feb;23(Pt 1):13–18. [PubMed] [Google Scholar]
  102. Yakimov M. M., Timmis K. N., Wray V., Fredrickson H. L. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol. 1995 May;61(5):1706–1713. doi: 10.1128/aem.61.5.1706-1713.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Zajic J. E., Guignard H., Gerson D. F. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol Bioeng. 1977 Sep;19(9):1303–1320. doi: 10.1002/bit.260190905. [DOI] [PubMed] [Google Scholar]
  104. Zhang Y., Miller R. M. Effect of Rhamnolipid (Biosurfactant) Structure on Solubilization and Biodegradation of n-Alkanes. Appl Environ Microbiol. 1995 Jun;61(6):2247–2251. doi: 10.1128/aem.61.6.2247-2251.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Zhang Y., Miller R. M. Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol. 1994 Jun;60(6):2101–2106. doi: 10.1128/aem.60.6.2101-2106.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Zhang Y., Miller R. M. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol. 1992 Oct;58(10):3276–3282. doi: 10.1128/aem.58.10.3276-3282.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Zuckerberg A., Diver A., Peeri Z., Gutnick D. L., Rosenberg E. Emulsifier of Arthrobacter RAG-1: chemical and physical properties. Appl Environ Microbiol. 1979 Mar;37(3):414–420. doi: 10.1128/aem.37.3.414-420.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiology and Molecular Biology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES