Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Microbiology and Molecular Biology Reviews : MMBR logoLink to Microbiology and Molecular Biology Reviews : MMBR
. 1997 Mar;61(1):90–104. doi: 10.1128/mmbr.61.1.90-104.1997

Evolutionary divergence and salinity-mediated selection in halophilic archaea.

P P Dennis 1, L C Shimmin 1
PMCID: PMC232602  PMID: 9106366

Abstract

Halophilic (literally salt-loving) archaea are a highly evolved group of organisms that are uniquely able to survive in and exploit hypersaline environments. In this review, we examine the potential interplay between fluctuations in environmental salinity and the primary sequence and tertiary structure of halophilic proteins. The proteins of halophilic archaea are highly adapted and magnificently engineered to function in an intracellular milieu that is in ionic balance with an external environment containing between 2 and 5 M inorganic salt. To understand the nature of halophilic adaptation and to visualize this interplay, the sequences of genes encoding the L11, L1, L10, and L12 proteins of the large ribosome subunit and Mn/Fe superoxide dismutase proteins from three genera of halophilic archaea have been aligned and analyzed for the presence of synonymous and nonsynonymous nucleotide substitutions. Compared to homologous eubacterial genes, these halophilic genes exhibit an inordinately high proportion of nonsynonymous nucleotide substitutions that result in amino acid replacement in the encoded proteins. More than one-third of the replacements involve acidic amino acid residues. We suggest that fluctuations in environmental salinity provide the driving force for fixation of the excessive number of nonsynonymous substitutions. Tinkering with the number, location, and arrangement of acidic and other amino acid residues influences the fitness (i.e., hydrophobicity, surface hydration, and structural stability) of the halophilic protein. Tinkering is also evident at halophilic protein positions monomorphic or polymorphic for serine; more than one-third of these positions use both the TCN and the AGY serine codons, indicating that there have been multiple nonsynonymous substitutions at these positions. Our model suggests that fluctuating environmental salinity prevents optimization of fitness for many halophilic proteins and helps to explain the unusual evolutionary divergence of their encoding genes.

Full Text

The Full Text of this article is available as a PDF (451.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt E., Weigel C. Nucleotide sequence of the genes encoding the L11, L1, L10 and L12 equivalent ribosomal proteins from the archaebacterium Halobacterium marismortui. Nucleic Acids Res. 1990 Mar 11;18(5):1285–1285. doi: 10.1093/nar/18.5.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHRISTIAN J. H., WALTHO J. A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta. 1962 Dec 17;65:506–508. doi: 10.1016/0006-3002(62)90453-5. [DOI] [PubMed] [Google Scholar]
  3. Dym O., Mevarech M., Sussman J. L. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science. 1995 Mar 3;267(5202):1344–1346. doi: 10.1126/science.267.5202.1344. [DOI] [PubMed] [Google Scholar]
  4. Eisenberg H., Mevarech M., Zaccai G. Biochemical, structural, and molecular genetic aspects of halophilism. Adv Protein Chem. 1992;43:1–62. doi: 10.1016/s0065-3233(08)60553-7. [DOI] [PubMed] [Google Scholar]
  5. Frolow F., Harel M., Sussman J. L., Mevarech M., Shoham M. Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe-2S ferredoxin. Nat Struct Biol. 1996 May;3(5):452–458. doi: 10.1038/nsb0596-452. [DOI] [PubMed] [Google Scholar]
  6. Joshi P., Dennis P. P. Characterization of paralogous and orthologous members of the superoxide dismutase gene family from genera of the halophilic archaebacteria. J Bacteriol. 1993 Mar;175(6):1561–1571. doi: 10.1128/jb.175.6.1561-1571.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Joshi P., Dennis P. P. Structure, function, and evolution of the family of superoxide dismutase proteins from halophilic archaebacteria. J Bacteriol. 1993 Mar;175(6):1572–1579. doi: 10.1128/jb.175.6.1572-1579.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lanyi J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 1974 Sep;38(3):272–290. doi: 10.1128/br.38.3.272-290.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Li W. H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol. 1993 Jan;36(1):96–99. doi: 10.1007/BF02407308. [DOI] [PubMed] [Google Scholar]
  10. May B. P., Dennis P. P. Evolution and regulation of the gene encoding superoxide dismutase from the archaebacterium Halobacterium cutirubrum. J Biol Chem. 1989 Jul 25;264(21):12253–12258. [PubMed] [Google Scholar]
  11. May B. P., Dennis P. P. Superoxide dismutase from the extremely halophilic archaebacterium Halobacterium cutirubrum. J Bacteriol. 1987 Apr;169(4):1417–1422. doi: 10.1128/jb.169.4.1417-1422.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. May B. P., Dennis P. P. Unusual evolution of a superoxide dismutase-like gene from the extremely halophilic archaebacterium Halobacterium cutirubrum. J Bacteriol. 1990 Jul;172(7):3725–3729. doi: 10.1128/jb.172.7.3725-3729.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCarthy R. A., Warrington E. K. Evidence for modality-specific meaning systems in the brain. Nature. 1988 Aug 4;334(6181):428–430. doi: 10.1038/334428a0. [DOI] [PubMed] [Google Scholar]
  14. Mylvaganam S., Dennis P. P. Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics. 1992 Mar;130(3):399–410. doi: 10.1093/genetics/130.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ochman H., Wilson A. C. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26(1-2):74–86. doi: 10.1007/BF02111283. [DOI] [PubMed] [Google Scholar]
  16. Post L. E., Strycharz G. D., Nomura M., Lewis H., Dennis P. P. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1697–1701. doi: 10.1073/pnas.76.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ramirez C., Shimmin L. C., Newton C. H., Matheson A. T., Dennis P. P. Structure and evolution of the L11, L1, L10, and L12 equivalent ribosomal proteins in eubacteria, archaebacteria, and eucaryotes. Can J Microbiol. 1989 Jan;35(1):234–244. doi: 10.1139/m89-036. [DOI] [PubMed] [Google Scholar]
  18. Rao J. K., Argos P. Structural stability of halophilic proteins. Biochemistry. 1981 Nov 10;20(23):6536–6543. doi: 10.1021/bi00526a004. [DOI] [PubMed] [Google Scholar]
  19. Rogall T., Wolters J., Flohr T., Böttger E. C. Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol. 1990 Oct;40(4):323–330. doi: 10.1099/00207713-40-4-323. [DOI] [PubMed] [Google Scholar]
  20. SEHGAL S. N., GIBBONS N. E. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol. 1960 Apr;6:165–169. doi: 10.1139/m60-018. [DOI] [PubMed] [Google Scholar]
  21. Saenger W. Structure and dynamics of water surrounding biomolecules. Annu Rev Biophys Biophys Chem. 1987;16:93–114. doi: 10.1146/annurev.bb.16.060187.000521. [DOI] [PubMed] [Google Scholar]
  22. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  23. Shimmin L. C., Dennis P. P. Characterization of the L11, L1, L10 and L12 equivalent ribosomal protein gene cluster of the halophilic archaebacterium Halobacterium cutirubrum. EMBO J. 1989 Apr;8(4):1225–1235. doi: 10.1002/j.1460-2075.1989.tb03496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shimmin L. C., Dennis P. P. Conserved sequence elements involved in regulation of ribosomal protein gene expression in halophilic archaea. J Bacteriol. 1996 Aug;178(15):4737–4741. doi: 10.1128/jb.178.15.4737-4741.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sor F., Nomura M. Cloning and DNA sequence determination of the L11 ribosomal protein operon of Serratia marcescens and Proteus vulgaris: translational feedback regulation of the Escherichia coli L11 operon by heterologous L1 proteins. Mol Gen Genet. 1987 Nov;210(1):52–59. doi: 10.1007/BF00337758. [DOI] [PubMed] [Google Scholar]
  26. Stallings W. C., Pattridge K. A., Strong R. K., Ludwig M. L. The structure of manganese superoxide dismutase from Thermus thermophilus HB8 at 2.4-A resolution. J Biol Chem. 1985 Dec 25;260(30):16424–16432. [PubMed] [Google Scholar]
  27. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  28. Zaccai G., Cendrin F., Haik Y., Borochov N., Eisenberg H. Stabilization of halophilic malate dehydrogenase. J Mol Biol. 1989 Aug 5;208(3):491–500. doi: 10.1016/0022-2836(89)90512-3. [DOI] [PubMed] [Google Scholar]
  29. Zolg J. W., Philippi-Schulz S. The superoxide dismutase gene, a target for detection and identification of mycobacteria by PCR. J Clin Microbiol. 1994 Nov;32(11):2801–2812. doi: 10.1128/jcm.32.11.2801-2812.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiology and Molecular Biology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES