Skip to main content
Microbiology and Molecular Biology Reviews : MMBR logoLink to Microbiology and Molecular Biology Reviews : MMBR
. 1997 Sep;61(3):305–318. doi: 10.1128/mmbr.61.3.305-318.1997

Microbial physiology and ecology of slow growth.

A L Koch 1
PMCID: PMC232613  PMID: 9293184

Abstract

The uptake capabilities of the cell have evolved to permit growth at very low external nutrient concentrations. How are these capabilities controlled when the substrate concentrations are not extremely low and the uptake systems could import substrate much more rapidly than the metabolic capabilities of the cell might be able to handle? To answer this question, earlier theories for the kinetics of uptake through the cell envelope and steady-state systems of metabolic enzymes are discussed and a computer simulation is presented. The problems to the cell of fluctuating levels of nutrient and too much substrate during continuous culture are discussed. Too much substrate can lead to oligotrophy, substrate-accelerated death, entry into the viable but not culturable state, and lactose killing. The relationship between uptake and growth is considered. Finally, too little substrate may lead to catastrophic attempts at mounting molecular syntheses that cannot be completed.

Full Text

The Full Text of this article is available as a PDF (308.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
  2. Berg H. C., Purcell E. M. Physics of chemoreception. Biophys J. 1977 Nov;20(2):193–219. doi: 10.1016/S0006-3495(77)85544-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Briggs G. E., Haldane J. B. A Note on the Kinetics of Enzyme Action. Biochem J. 1925;19(2):338–339. doi: 10.1042/bj0190338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryson V., Szybalski W. Microbial Selection. Science. 1952 Jul 18;116(3003):45–51. doi: 10.1126/science.116.3003.45. [DOI] [PubMed] [Google Scholar]
  5. Button D. K. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the michaelis constant. Appl Environ Microbiol. 1991 Jul;57(7):2033–2038. doi: 10.1128/aem.57.7.2033-2038.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Button D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985 Sep;49(3):270–297. doi: 10.1128/mr.49.3.270-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Button D. K. Nutrient-limited microbial growth kinetics: overview and recent advances. Antonie Van Leeuwenhoek. 1993;63(3-4):225–235. doi: 10.1007/BF00871220. [DOI] [PubMed] [Google Scholar]
  8. Button D. K., Schut F., Quang P., Martin R., Robertson B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol. 1993 Mar;59(3):881–891. doi: 10.1128/aem.59.3.881-891.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  10. Calcott P. H., Calvert T. J. Characterization of 3': 5' -cyclic AMP phosphodiesterase in Klebsiella aerogenes and its role in substrate-accelerated death. J Gen Microbiol. 1981 Feb;122(2):313–321. doi: 10.1099/00221287-122-2-313. [DOI] [PubMed] [Google Scholar]
  11. Chesbro W., Evans T., Eifert R. Very slow growth of Escherichia coli. J Bacteriol. 1979 Aug;139(2):625–638. doi: 10.1128/jb.139.2.625-638.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chesbro W. The domains of slow bacterial growth. Can J Microbiol. 1988 Apr;34(4):427–435. doi: 10.1139/m88-075. [DOI] [PubMed] [Google Scholar]
  13. Dabes J. N., Finn R. K., Welke C. R. Equations of substrate-limited growth: the case for blackman kinetics. Biotechnol Bioeng. 1973 Nov;15(6):1159–1177. doi: 10.1002/bit.260150613. [DOI] [PubMed] [Google Scholar]
  14. Dykhuizen D. E., Dean A. M., Hartl D. L. Metabolic flux and fitness. Genetics. 1987 Jan;115(1):25–31. doi: 10.1093/genetics/115.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dykhuizen D., Hartl D. Transport by the lactose permease of Escherichia coli as the basis of lactose killing. J Bacteriol. 1978 Sep;135(3):876–882. doi: 10.1128/jb.135.3.876-882.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Egli T., Lendenmann U., Snozzi M. Kinetics of microbial growth with mixtures of carbon sources. Antonie Van Leeuwenhoek. 1993;63(3-4):289–298. doi: 10.1007/BF00871224. [DOI] [PubMed] [Google Scholar]
  17. Egli T. On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Antonie Van Leeuwenhoek. 1991 Oct-Nov;60(3-4):225–234. doi: 10.1007/BF00430367. [DOI] [PubMed] [Google Scholar]
  18. HEARON J. Z. Rate behavior of metabolic systems. Physiol Rev. 1952 Oct;32(4):499–523. doi: 10.1152/physrev.1952.32.4.499. [DOI] [PubMed] [Google Scholar]
  19. HEARON J. Z. Thermodynamic principles as applied to the analysis of biological systems. Fed Proc. 1951 Sep;10(3):602–610. [PubMed] [Google Scholar]
  20. Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. doi: 10.1093/genetics/126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hegewald E., Knorre W. A. Kinetics of growth and substrate consumption of Escherichia coli ML 30 on two carbon sources. Z Allg Mikrobiol. 1978;18(6):415–426. [PubMed] [Google Scholar]
  22. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  23. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  24. Koch A. L., Coffman R. Diffusion, permeation, or enzyme limitation: a probe for the kinetics of enzyme induction. Biotechnol Bioeng. 1970 Sep;12(5):651–677. doi: 10.1002/bit.260120503. [DOI] [PubMed] [Google Scholar]
  25. Koch A. L. Deviations from hyperbolic dependency of transport processes. J Theor Biol. 1972 Jul;36(1):23–40. doi: 10.1016/0022-5193(72)90174-9. [DOI] [PubMed] [Google Scholar]
  26. Koch A. L. Genetic response of microbes to extreme challenges. J Theor Biol. 1993 Jan 7;160(1):1–21. doi: 10.1006/jtbi.1993.1001. [DOI] [PubMed] [Google Scholar]
  27. Koch A. L. Kinetics of permease catalyzed transport. J Theor Biol. 1967 Feb;14(2):103–130. doi: 10.1016/0022-5193(67)90109-9. [DOI] [PubMed] [Google Scholar]
  28. Koch A. L. Multistep kinetics: choice of models for the growth of bacteria. J Theor Biol. 1982 Oct 7;98(3):401–417. doi: 10.1016/0022-5193(82)90127-8. [DOI] [PubMed] [Google Scholar]
  29. Koch A. L. The adaptive responses of Escherichia coli to a feast and famine existence. Adv Microb Physiol. 1971;6:147–217. doi: 10.1016/s0065-2911(08)60069-7. [DOI] [PubMed] [Google Scholar]
  30. Koch A. L., Wang C. H. How close to the theoretical diffusion limit do bacterial uptake systems function? Arch Microbiol. 1982 Feb;131(1):36–42. doi: 10.1007/BF00451496. [DOI] [PubMed] [Google Scholar]
  31. Koch A. L. What size should a bacterium be? A question of scale. Annu Rev Microbiol. 1996;50:317–348. doi: 10.1146/annurev.micro.50.1.317. [DOI] [PubMed] [Google Scholar]
  32. Koch A. L. Why can't a cell grow infinitely fast? Can J Microbiol. 1988 Apr;34(4):421–426. doi: 10.1139/m88-074. [DOI] [PubMed] [Google Scholar]
  33. Kolter R., Siegele D. A., Tormo A. The stationary phase of the bacterial life cycle. Annu Rev Microbiol. 1993;47:855–874. doi: 10.1146/annurev.mi.47.100193.004231. [DOI] [PubMed] [Google Scholar]
  34. Lange R., Hengge-Aronis R. Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol. 1991 Jul;173(14):4474–4481. doi: 10.1128/jb.173.14.4474-4481.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Law A. T., Button D. K. Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. J Bacteriol. 1977 Jan;129(1):115–123. doi: 10.1128/jb.129.1.115-123.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lendenmann U., Egli T. Is Escherichia coli growing in glucose-limited chemostat culture able to utilize other sugars without lag? Microbiology. 1995 Jan;141(Pt 1):71–78. doi: 10.1099/00221287-141-1-71. [DOI] [PubMed] [Google Scholar]
  37. MONOD J., PAPPENHEIMER A. M., Jr, COHEN-BAZIRE G. La cinétique de la biosynthèse de la beta-galactosidase chez E. coli considérée comme fonction de la croissance. Biochim Biophys Acta. 1952 Dec;9(6):648–660. doi: 10.1016/0006-3002(52)90227-8. [DOI] [PubMed] [Google Scholar]
  38. Matin A. The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol. 1991 Jan;5(1):3–10. doi: 10.1111/j.1365-2958.1991.tb01819.x. [DOI] [PubMed] [Google Scholar]
  39. Mendes P. GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci. 1993 Oct;9(5):563–571. doi: 10.1093/bioinformatics/9.5.563. [DOI] [PubMed] [Google Scholar]
  40. NOVICK A. Growth of bacteria. Annu Rev Microbiol. 1955;9:97–110. doi: 10.1146/annurev.mi.09.100155.000525. [DOI] [PubMed] [Google Scholar]
  41. NOVICK A., SZILARD L. Experiments on spontaneous and chemically induced mutations of bacteria growing in the Chemostat. Cold Spring Harb Symp Quant Biol. 1951;16:337–343. doi: 10.1101/sqb.1951.016.01.025. [DOI] [PubMed] [Google Scholar]
  42. NOVICK A., SZILARD L. Experiments with the Chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci U S A. 1950 Dec;36(12):708–719. doi: 10.1073/pnas.36.12.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Neijssel O. M., Tempest D. W. The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture. Arch Microbiol. 1976 Nov 2;110(23):305–311. doi: 10.1007/BF00690243. [DOI] [PubMed] [Google Scholar]
  44. POSTGATE J. R., HUNTER J. R. ACCELERATED DEATH OF AEROBACTER AEROGENES STARVED IN THE PRESENCE OF GROWTH-LIMITING SUBSTRATES. J Gen Microbiol. 1964 Mar;34:459–473. doi: 10.1099/00221287-34-3-459. [DOI] [PubMed] [Google Scholar]
  45. Pirt S. J. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol. 1982 Dec 3;133(4):300–302. doi: 10.1007/BF00521294. [DOI] [PubMed] [Google Scholar]
  46. Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
  47. Rosenzweig R. F., Adams J. Microbial adaptation to a changeable environment: cell-cell interactions mediate physiological and genetic differentiation. Bioessays. 1994 Oct;16(10):715–717. doi: 10.1002/bies.950161005. [DOI] [PubMed] [Google Scholar]
  48. Rosenzweig R. F., Sharp R. R., Treves D. S., Adams J. Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. Genetics. 1994 Aug;137(4):903–917. doi: 10.1093/genetics/137.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shehata T. E., Marr A. G. Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol. 1971 Jul;107(1):210–216. doi: 10.1128/jb.107.1.210-216.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Silver R. S., Mateles R. I. Control of mixed-substrate utilization in continuous cultures of Escherichia coli. J Bacteriol. 1969 Feb;97(2):535–543. doi: 10.1128/jb.97.2.535-543.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Votyakova T. V., Kaprelyants A. S., Kell D. B. Influence of Viable Cells on the Resuscitation of Dormant Cells in Micrococcus luteus Cultures Held in an Extended Stationary Phase: the Population Effect. Appl Environ Microbiol. 1994 Sep;60(9):3284–3291. doi: 10.1128/aem.60.9.3284-3291.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wang C. H., Koch A. L. Constancy of growth on simple and complex media. J Bacteriol. 1978 Dec;136(3):969–975. doi: 10.1128/jb.136.3.969-975.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Westerhoff H. V., Welch G. R. Enzyme organization and the direction of metabolic flow: physicochemical considerations. Curr Top Cell Regul. 1992;33:361–390. doi: 10.1016/b978-0-12-152833-1.50026-5. [DOI] [PubMed] [Google Scholar]
  54. Westerhoff H. V., van Heeswijk W., Kahn D., Kell D. B. Quantitative approaches to the analysis of the control and regulation of microbial metabolism. Antonie Van Leeuwenhoek. 1991 Oct-Nov;60(3-4):193–207. doi: 10.1007/BF00430365. [DOI] [PubMed] [Google Scholar]
  55. van Dam K., Jansen N. Quantification of control of microbial metabolism by substrates and enzymes. Antonie Van Leeuwenhoek. 1991 Oct-Nov;60(3-4):209–223. doi: 10.1007/BF00430366. [DOI] [PubMed] [Google Scholar]
  56. van Verseveld H. W., Chesbro W. R., Braster M., Stouthamer A. H. Eubacteria have 3 growth modes keyed to nutrient flow. Consequences for the concept of maintenance and maximal growth yield. Arch Microbiol. 1984 Feb;137(2):176–184. doi: 10.1007/BF00414463. [DOI] [PubMed] [Google Scholar]

Articles from Microbiology and Molecular Biology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES