Skip to main content
Microbiology and Molecular Biology Reviews : MMBR logoLink to Microbiology and Molecular Biology Reviews : MMBR
. 1997 Sep;61(3):337–376. doi: 10.1128/mmbr.61.3.337-376.1997

Biogenesis of respiratory cytochromes in bacteria.

L Thöny-Meyer 1
PMCID: PMC232615  PMID: 9293186

Abstract

Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Jaoudé A., Pascal M. C., Chippaux M. Formate-nitrite reduction in Escherichia coli K12. 2. Identification of components involved in the electron transfer. Eur J Biochem. 1979 Apr 2;95(2):315–321. doi: 10.1111/j.1432-1033.1979.tb12967.x. [DOI] [PubMed] [Google Scholar]
  2. Aguilar G. R., Soberón M. Cloning and sequence analysis of the Rhizobium etli ccmA and ccmB genes involved in c-type cytochrome biogenesis. Gene. 1996 Dec 5;182(1-2):129–135. doi: 10.1016/s0378-1119(96)00534-3. [DOI] [PubMed] [Google Scholar]
  3. Alami N., Hallenbeck P. C. Cloning and characterization of a gene cluster, phsBCDEF, necessary for the production of hydrogen sulfide from thiosulfate by Salmonella typhimurium. Gene. 1995 Apr 14;156(1):53–57. doi: 10.1016/0378-1119(94)00930-q. [DOI] [PubMed] [Google Scholar]
  4. Alefounder P. R., Ferguson S. J. The location of dissimilatory nitrite reductase and the control of dissimilatory nitrate reductase by oxygen in Paracoccus denitrificans. Biochem J. 1980 Oct 15;192(1):231–240. doi: 10.1042/bj1920231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anthony C. The c-type cytochromes of methylotrophic bacteria. Biochim Biophys Acta. 1992 Jan 30;1099(1):1–15. [PubMed] [Google Scholar]
  6. Babcock G. T., Wikström M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992 Mar 26;356(6367):301–309. doi: 10.1038/356301a0. [DOI] [PubMed] [Google Scholar]
  7. Bai Y., Sosnick T. R., Mayne L., Englander S. W. Protein folding intermediates: native-state hydrogen exchange. Science. 1995 Jul 14;269(5221):192–197. doi: 10.1126/science.7618079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ballard A. L., Ferguson S. J. Respiratory nitrate reductase from Paracoccus denitrificans. Evidence for two b-type haems in the gamma subunit and properties of a water-soluble active enzyme containing alpha and beta subunits. Eur J Biochem. 1988 May 16;174(1):207–212. doi: 10.1111/j.1432-1033.1988.tb14083.x. [DOI] [PubMed] [Google Scholar]
  9. Bardwell J. C., Beckwith J. The bonds that tie: catalyzed disulfide bond formation. Cell. 1993 Sep 10;74(5):769–771. doi: 10.1016/0092-8674(93)90455-y. [DOI] [PubMed] [Google Scholar]
  10. Bardwell J. C. Building bridges: disulphide bond formation in the cell. Mol Microbiol. 1994 Oct;14(2):199–205. doi: 10.1111/j.1365-2958.1994.tb01281.x. [DOI] [PubMed] [Google Scholar]
  11. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  12. Barker P. D., Ferrer J. C., Mylrajan M., Loehr T. M., Feng R., Konishi Y., Funk W. D., MacGillivray R. T., Mauk A. G. Transmutation of a heme protein. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6542–6546. doi: 10.1073/pnas.90.14.6542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Barker P. D., Nerou E. P., Freund S. M., Fearnley I. M. Conversion of cytochrome b562 to c-type cytochromes. Biochemistry. 1995 Nov 21;34(46):15191–15203. doi: 10.1021/bi00046a027. [DOI] [PubMed] [Google Scholar]
  14. Barrett E. L., Clark M. A. Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev. 1987 Jun;51(2):192–205. doi: 10.1128/mr.51.2.192-205.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Basile G., Di Bello C., Taniuchi H. Formation of an iso-1-cytochrome c-like species containing a covalently bonded heme group from the apoprotein by a yeast cell-free system in the presence of hemin. J Biol Chem. 1980 Aug 10;255(15):7181–7191. [PubMed] [Google Scholar]
  16. Bebbington K. J., Williams H. D. Investigation of the role of the cydD gene product in production of a functional cytochrome d oxidase in Escherichia coli. FEMS Microbiol Lett. 1993 Aug 15;112(1):19–24. doi: 10.1111/j.1574-6968.1993.tb06417.x. [DOI] [PubMed] [Google Scholar]
  17. Beckman D. L., Kranz R. G. Cytochromes c biogenesis in a photosynthetic bacterium requires a periplasmic thioredoxin-like protein. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2179–2183. doi: 10.1073/pnas.90.6.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Beckman D. L., Trawick D. R., Kranz R. G. Bacterial cytochromes c biogenesis. Genes Dev. 1992 Feb;6(2):268–283. doi: 10.1101/gad.6.2.268. [DOI] [PubMed] [Google Scholar]
  19. Berben G. Nitrobacter winogradskyi cytochrome c oxidase genes are organized in a repeated gene cluster. Antonie Van Leeuwenhoek. 1996 May;69(4):305–315. doi: 10.1007/BF00399619. [DOI] [PubMed] [Google Scholar]
  20. Berg B. L., Li J., Heider J., Stewart V. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem. 1991 Nov 25;266(33):22380–22385. [PubMed] [Google Scholar]
  21. Berks B. C., Page M. D., Richardson D. J., Reilly A., Cavill A., Outen F., Ferguson S. J. Sequence analysis of subunits of the membrane-bound nitrate reductase from a denitrifying bacterium: the integral membrane subunit provides a prototype for the dihaem electron-carrying arm of a redox loop. Mol Microbiol. 1995 Jan;15(2):319–331. doi: 10.1111/j.1365-2958.1995.tb02246.x. [DOI] [PubMed] [Google Scholar]
  22. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J. 1995 Aug 1;309(Pt 3):983–992. doi: 10.1042/bj3090983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Berks B. C., Richardson D. J., Robinson C., Reilly A., Aplin R. T., Ferguson S. J. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur J Biochem. 1994 Feb 15;220(1):117–124. doi: 10.1111/j.1432-1033.1994.tb18605.x. [DOI] [PubMed] [Google Scholar]
  24. Berry E. A., Trumpower B. L. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes. J Biol Chem. 1985 Feb 25;260(4):2458–2467. [PubMed] [Google Scholar]
  25. Blasco F., Pommier J., Augier V., Chippaux M., Giordano G. Involvement of the narJ or narW gene product in the formation of active nitrate reductase in Escherichia coli. Mol Microbiol. 1992 Jan;6(2):221–230. doi: 10.1111/j.1365-2958.1992.tb02003.x. [DOI] [PubMed] [Google Scholar]
  26. Bokranz M., Gutmann M., Körtner C., Kojro E., Fahrenholz F., Lauterbach F., Kröger A. Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol. 1991;156(2):119–128. doi: 10.1007/BF00290984. [DOI] [PubMed] [Google Scholar]
  27. Bonnefoy V., Demoss J. A. Nitrate reductases in Escherichia coli. Antonie Van Leeuwenhoek. 1994;66(1-3):47–56. doi: 10.1007/BF00871632. [DOI] [PubMed] [Google Scholar]
  28. Bott M., Bolliger M., Hennecke H. Genetic analysis of the cytochrome c-aa3 branch of the Bradyrhizobium japonicum respiratory chain. Mol Microbiol. 1990 Dec;4(12):2147–2157. doi: 10.1111/j.1365-2958.1990.tb00576.x. [DOI] [PubMed] [Google Scholar]
  29. Bott M., Ritz D., Hennecke H. The Bradyrhizobium japonicum cycM gene encodes a membrane-anchored homolog of mitochondrial cytochrome c. J Bacteriol. 1991 Nov;173(21):6766–6772. doi: 10.1128/jb.173.21.6766-6772.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Brand S. N., Tan X., Widger W. R. Cloning and sequencing of the petBD operon from the cyanobacterium Synechococcus sp. PCC 7002. Plant Mol Biol. 1992 Nov;20(3):481–491. doi: 10.1007/BF00040607. [DOI] [PubMed] [Google Scholar]
  31. Brandner J. P., Donohue T. J. The Rhodobacter sphaeroides cytochrome c2 signal peptide is not necessary for export and heme attachment. J Bacteriol. 1994 Feb;176(3):602–609. doi: 10.1128/jb.176.3.602-609.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Brandner J. P., Stabb E. V., Temme R., Donohue T. J. Regions of Rhodobacter sphaeroides cytochrome c2 required for export, heme attachment, and function. J Bacteriol. 1991 Jul;173(13):3958–3965. doi: 10.1128/jb.173.13.3958-3965.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Brasseur G., Saribaş A. S., Daldal F. A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc1 complex. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):61–69. doi: 10.1016/0005-2728(96)00051-5. [DOI] [PubMed] [Google Scholar]
  34. Brittain T., Blackmore R., Greenwood C., Thomson A. J. Bacterial nitrite-reducing enzymes. Eur J Biochem. 1992 Nov 1;209(3):793–802. doi: 10.1111/j.1432-1033.1992.tb17350.x. [DOI] [PubMed] [Google Scholar]
  35. Brown S., Moody A. J., Mitchell R., Rich P. R. Binuclear centre structure of terminal protonmotive oxidases. FEBS Lett. 1993 Feb 1;316(3):216–223. doi: 10.1016/0014-5793(93)81296-c. [DOI] [PubMed] [Google Scholar]
  36. Buggy J., Bauer C. E. Cloning and characterization of senC, a gene involved in both aerobic respiration and photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol. 1995 Dec;177(23):6958–6965. doi: 10.1128/jb.177.23.6958-6965.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Buse G., Hensel S., Fee J. A. Evidence for cytochrome oxidase subunit I and a cytochrome c--subunit II fused protein in the cytochrome 'c1aa3' of Thermus thermophilus. How old is cytochrome oxidase? Eur J Biochem. 1989 Apr 15;181(1):261–268. doi: 10.1111/j.1432-1033.1989.tb14720.x. [DOI] [PubMed] [Google Scholar]
  38. Calhoun M. W., Hill J. J., Lemieux L. J., Ingledew W. J., Alben J. O., Gennis R. B. Site-directed mutants of the cytochrome bo ubiquinol oxidase of Escherichia coli: amino acid substitutions for two histidines that are putative CuB ligands. Biochemistry. 1993 Nov 2;32(43):11524–11529. doi: 10.1021/bi00094a008. [DOI] [PubMed] [Google Scholar]
  39. Calhoun M. W., Lemieux L. J., Garcia-Horsman J. A., Thomas J. W., Alben J. O., Gennis R. B. The highly conserved methionine of subunit I of the heme-copper oxidases is not at the heme-copper dinuclear center: mutagenesis of M110 in subunit I of cytochrome bo3-type ubiquinol oxidase from Escherichia coli. FEBS Lett. 1995 Jul 24;368(3):523–525. doi: 10.1016/0014-5793(95)00696-7. [DOI] [PubMed] [Google Scholar]
  40. Calhoun M. W., Thomas J. W., Gennis R. B. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci. 1994 Aug;19(8):325–330. doi: 10.1016/0968-0004(94)90071-x. [DOI] [PubMed] [Google Scholar]
  41. Calhoun M. W., Thomas J. W., Hill J. J., Hosler J. P., Shapleigh J. P., Tecklenburg M. M., Ferguson-Miller S., Babcock G. T., Alben J. O., Gennis R. B. Identity of the axial ligand of the high-spin heme in cytochrome oxidase: spectroscopic characterization of mutants in the bo-type oxidase of Escherichia coli and the aa3-type oxidase of Rhodobacter sphaeroides. Biochemistry. 1993 Oct 12;32(40):10905–10911. doi: 10.1021/bi00091a046. [DOI] [PubMed] [Google Scholar]
  42. Cao J., Hosler J., Shapleigh J., Revzin A., Ferguson-Miller S. Cytochrome aa3 of Rhodobacter sphaeroides as a model for mitochondrial cytochrome c oxidase. The coxII/coxIII operon codes for structural and assembly proteins homologous to those in yeast. J Biol Chem. 1992 Dec 5;267(34):24273–24278. [PubMed] [Google Scholar]
  43. Cao J., Shapleigh J., Gennis R., Revzin A., Ferguson-Miller S. The gene encoding cytochrome c oxidase subunit II from Rhodobacter sphaeroides; comparison of the deduced amino acid sequence with sequences of corresponding peptides from other species. Gene. 1991 May 15;101(1):133–137. doi: 10.1016/0378-1119(91)90235-4. [DOI] [PubMed] [Google Scholar]
  44. Chen R., Henning U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol Microbiol. 1996 Mar;19(6):1287–1294. doi: 10.1111/j.1365-2958.1996.tb02473.x. [DOI] [PubMed] [Google Scholar]
  45. Chepuri V., Gennis R. B. The use of gene fusions to determine the topology of all of the subunits of the cytochrome o terminal oxidase complex of Escherichia coli. J Biol Chem. 1990 Aug 5;265(22):12978–12986. [PubMed] [Google Scholar]
  46. Chepuri V., Lemieux L., Au D. C., Gennis R. B. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol Chem. 1990 Jul 5;265(19):11185–11192. [PubMed] [Google Scholar]
  47. Claiborne A., Fridovich I. Purification of the o-dianisidine peroxidase from Escherichia coli B. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem. 1979 May 25;254(10):4245–4252. [PubMed] [Google Scholar]
  48. Claiborne A., Malinowski D. P., Fridovich I. Purification and characterization of hydroperoxidase II of Escherichia coli B. J Biol Chem. 1979 Nov 25;254(22):11664–11668. [PubMed] [Google Scholar]
  49. Cole J. Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol Lett. 1996 Feb 1;136(1):1–11. doi: 10.1111/j.1574-6968.1996.tb08017.x. [DOI] [PubMed] [Google Scholar]
  50. Cope L. D., Thomas S. E., Latimer J. L., Slaughter C. A., Müller-Eberhard U., Hansen E. J. The 100 kDa haem:haemopexin-binding protein of Haemophilus influenzae: structure and localization. Mol Microbiol. 1994 Sep;13(5):863–873. doi: 10.1111/j.1365-2958.1994.tb00478.x. [DOI] [PubMed] [Google Scholar]
  51. Cope L. D., Yogev R., Muller-Eberhard U., Hansen E. J. A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b. J Bacteriol. 1995 May;177(10):2644–2653. doi: 10.1128/jb.177.10.2644-2653.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Crane B. R., Siegel L. M., Getzoff E. D. Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions. Science. 1995 Oct 6;270(5233):59–67. doi: 10.1126/science.270.5233.59. [DOI] [PubMed] [Google Scholar]
  53. Creusot F., Verdière J., Gaisne M., Slonimski P. P. CYP1 (HAP1) regulator of oxygen-dependent gene expression in yeast. I. Overall organization of the protein sequence displays several novel structural domains. J Mol Biol. 1988 Nov 20;204(2):263–276. doi: 10.1016/0022-2836(88)90574-8. [DOI] [PubMed] [Google Scholar]
  54. Crooke H., Cole J. The biogenesis of c-type cytochromes in Escherichia coli requires a membrane-bound protein, DipZ, with a protein disulphide isomerase-like domain. Mol Microbiol. 1995 Mar;15(6):1139–1150. doi: 10.1111/j.1365-2958.1995.tb02287.x. [DOI] [PubMed] [Google Scholar]
  55. D'mello R., Hill S., Poole R. K. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology. 1996 Apr;142(Pt 4):755–763. doi: 10.1099/00221287-142-4-755. [DOI] [PubMed] [Google Scholar]
  56. Dailey F. E., Berg H. C. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1043–1047. doi: 10.1073/pnas.90.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Dailey T. A., Meissner P., Dailey H. A. Expression of a cloned protoporphyrinogen oxidase. J Biol Chem. 1994 Jan 14;269(2):813–815. [PubMed] [Google Scholar]
  58. Dalbey R. E., Von Heijne G. Signal peptidases in prokaryotes and eukaryotes--a new protease family. Trends Biochem Sci. 1992 Nov;17(11):474–478. doi: 10.1016/0968-0004(92)90492-r. [DOI] [PubMed] [Google Scholar]
  59. Darlison M. G., Guest J. R. Nucleotide sequence encoding the iron-sulphur protein subunit of the succinate dehydrogenase of Escherichia coli. Biochem J. 1984 Oct 15;223(2):507–517. doi: 10.1042/bj2230507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Darwin A., Hussain H., Griffiths L., Grove J., Sambongi Y., Busby S., Cole J. Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol. 1993 Sep;9(6):1255–1265. doi: 10.1111/j.1365-2958.1993.tb01255.x. [DOI] [PubMed] [Google Scholar]
  61. Dassa J., Fsihi H., Marck C., Dion M., Kieffer-Bontemps M., Boquet P. L. A new oxygen-regulated operon in Escherichia coli comprises the genes for a putative third cytochrome oxidase and for pH 2.5 acid phosphatase (appA) Mol Gen Genet. 1991 Oct;229(3):341–352. doi: 10.1007/BF00267454. [DOI] [PubMed] [Google Scholar]
  62. Davidson E., Daldal F. Primary structure of the bc1 complex of Rhodopseudomonas capsulata. Nucleotide sequence of the pet operon encoding the Rieske cytochrome b, and cytochrome c1 apoproteins. J Mol Biol. 1987 May 5;195(1):13–24. doi: 10.1016/0022-2836(87)90323-8. [DOI] [PubMed] [Google Scholar]
  63. Davidson E., Ohnishi T., Tokito M., Daldal F. Rhodobacter capsulatus mutants lacking the Rieske FeS protein form a stable cytochrome bc1 subcomplex with an intact quinone reduction site. Biochemistry. 1992 Apr 7;31(13):3351–3358. doi: 10.1021/bi00128a007. [DOI] [PubMed] [Google Scholar]
  64. Delgado M. J., Yeoman K. H., Wu G., Vargas C., Davies A. E., Poole R. K., Johnston A. W., Downie J. A. Characterization of the cycHJKL genes involved in cytochrome c biogenesis and symbiotic nitrogen fixation in Rhizobium leguminosarum. J Bacteriol. 1995 Sep;177(17):4927–4934. doi: 10.1128/jb.177.17.4927-4934.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Doige C. A., Ames G. F. ATP-dependent transport systems in bacteria and humans: relevance to cystic fibrosis and multidrug resistance. Annu Rev Microbiol. 1993;47:291–319. doi: 10.1146/annurev.mi.47.100193.001451. [DOI] [PubMed] [Google Scholar]
  66. Dross F., Geisler V., Lenger R., Theis F., Krafft T., Fahrenholz F., Kojro E., Duchêne A., Tripier D., Juvenal K. The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes. Eur J Biochem. 1992 May 15;206(1):93–102. doi: 10.1111/j.1432-1033.1992.tb16905.x. [DOI] [PubMed] [Google Scholar]
  67. Drygas M. E., Lambowitz A. M., Nargang F. E. Cloning and analysis of the Neurospora crassa gene for cytochrome c heme lyase. J Biol Chem. 1989 Oct 25;264(30):17897–17906. [PubMed] [Google Scholar]
  68. Dubourdieu M., DeMoss J. A. The narJ gene product is required for biogenesis of respiratory nitrate reductase in Escherichia coli. J Bacteriol. 1992 Feb;174(3):867–872. doi: 10.1128/jb.174.3.867-872.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Dumont M. E., Corin A. F., Campbell G. A. Noncovalent binding of heme induces a compact apocytochrome c structure. Biochemistry. 1994 Jun 14;33(23):7368–7378. doi: 10.1021/bi00189a043. [DOI] [PubMed] [Google Scholar]
  70. Dumont M. E., Ernst J. F., Hampsey D. M., Sherman F. Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J. 1987 Jan;6(1):235–241. doi: 10.1002/j.1460-2075.1987.tb04744.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Enoch H. G., Lester R. L. The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem. 1975 Sep 10;250(17):6693–6705. [PubMed] [Google Scholar]
  72. Eraso J. M., Kaplan S. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol. 1995 May;177(10):2695–2706. doi: 10.1128/jb.177.10.2695-2706.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ermler U., Siddiqui R. A., Cramm R., Friedrich B. Crystal structure of the flavohemoglobin from Alcaligenes eutrophus at 1.75 A resolution. EMBO J. 1995 Dec 15;14(24):6067–6077. doi: 10.1002/j.1460-2075.1995.tb00297.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Esposti M. D. Prediction and comparison of the haem-binding sites in membrane haemoproteins. Biochim Biophys Acta. 1989 Dec 7;977(3):249–265. doi: 10.1016/s0005-2728(89)80079-9. [DOI] [PubMed] [Google Scholar]
  75. Esposti M. D. Prediction and comparison of the haem-binding sites in membrane haemoproteins. Biochim Biophys Acta. 1989 Dec 7;977(3):249–265. doi: 10.1016/s0005-2728(89)80079-9. [DOI] [PubMed] [Google Scholar]
  76. Fabianek R. A., Huber-Wunderlich M., Glockshuber R., Künzler P., Hennecke H., Thöny-Meyer L. Characterization of the Bradyrhizobium japonicum CycY protein, a membrane-anchored periplasmic thioredoxin that may play a role as a reductant in the biogenesis of c-type cytochromes. J Biol Chem. 1997 Feb 14;272(7):4467–4473. doi: 10.1074/jbc.272.7.4467. [DOI] [PubMed] [Google Scholar]
  77. Fang H., Lin R. J., Gennis R. B. Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis. J Biol Chem. 1989 May 15;264(14):8026–8032. [PubMed] [Google Scholar]
  78. Fath M. J., Kolter R. ABC transporters: bacterial exporters. Microbiol Rev. 1993 Dec;57(4):995–1017. doi: 10.1128/mr.57.4.995-1017.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Ferguson S. J. Denitrification and its control. Antonie Van Leeuwenhoek. 1994;66(1-3):89–110. doi: 10.1007/BF00871634. [DOI] [PubMed] [Google Scholar]
  80. Ferguson S. J. The functions and synthesis of bacterial c-type cytochromes with particular reference to Paracoccus denitrificans and Rhodobacter capsulatus. Biochim Biophys Acta. 1991 May 23;1058(1):17–20. doi: 10.1016/s0005-2728(05)80259-2. [DOI] [PubMed] [Google Scholar]
  81. Fischer G., Bang H., Mech C. Nachweis einer Enzymkatalyse für die cis-trans-Isomerisierung der Peptidbindung in prolinhaltigen Peptiden. Biomed Biochim Acta. 1984;43(10):1101–1111. [PubMed] [Google Scholar]
  82. Fischer H. M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 1994 Sep;58(3):352–386. doi: 10.1128/mr.58.3.352-386.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Fleischmann R. D., Adams M. D., White O., Clayton R. A., Kirkness E. F., Kerlavage A. R., Bult C. J., Tomb J. F., Dougherty B. A., Merrick J. M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995 Jul 28;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  84. Flory J. E., Donohue T. J. Organization and expression of the Rhodobacter sphaeroides cycFG operon. J Bacteriol. 1995 Aug;177(15):4311–4320. doi: 10.1128/jb.177.15.4311-4320.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Fong S. T., Camakaris J., Lee B. T. Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12. Mol Microbiol. 1995 Mar;15(6):1127–1137. doi: 10.1111/j.1365-2958.1995.tb02286.x. [DOI] [PubMed] [Google Scholar]
  86. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  87. Freedman R. B. Protein folding. Folding helpers and unhelpful folders. Curr Biol. 1994 Oct 1;4(10):933–935. doi: 10.1016/s0960-9822(00)00210-4. [DOI] [PubMed] [Google Scholar]
  88. Fridén H., Hederstedt L. Role of His residues in Bacillus subtilis cytochrome b558 for haem binding and assembly of succinate: quinone oxidoreductase (complex II). Mol Microbiol. 1990 Jun;4(6):1045–1056. doi: 10.1111/j.1365-2958.1990.tb00677.x. [DOI] [PubMed] [Google Scholar]
  89. Fridén H., Rutberg L., Magnusson K., Hederstedt L. Genetic and biochemical characterization of Bacillus subtilis mutants defective in expression and function of cytochrome b-558. Eur J Biochem. 1987 Nov 2;168(3):695–701. doi: 10.1111/j.1432-1033.1987.tb13471.x. [DOI] [PubMed] [Google Scholar]
  90. Fu R., Wall J. D., Voordouw G. DcrA, a c-type heme-containing methyl-accepting protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J Bacteriol. 1994 Jan;176(2):344–350. doi: 10.1128/jb.176.2.344-350.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Fülöp V., Moir J. W., Ferguson S. J., Hajdu J. The anatomy of a bifunctional enzyme: structural basis for reduction of oxygen to water and synthesis of nitric oxide by cytochrome cd1. Cell. 1995 May 5;81(3):369–377. doi: 10.1016/0092-8674(95)90390-9. [DOI] [PubMed] [Google Scholar]
  92. Gaballa A., Koedam N., Cornelis P. A cytochrome c biogenesis gene involved in pyoverdine production in Pseudomonas fluorescens ATCC 17400. Mol Microbiol. 1996 Aug;21(4):777–785. doi: 10.1046/j.1365-2958.1996.391399.x. [DOI] [PubMed] [Google Scholar]
  93. Gabellini N., Sebald W. Nucleotide sequence and transcription of the fbc operon from Rhodopseudomonas sphaeroides. Evaluation of the deduced amino acid sequences of the FeS protein, cytochrome b and cytochrome c1. Eur J Biochem. 1986 Feb 3;154(3):569–579. doi: 10.1111/j.1432-1033.1986.tb09437.x. [DOI] [PubMed] [Google Scholar]
  94. Galat A. Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem. 1993 Sep 15;216(3):689–707. doi: 10.1111/j.1432-1033.1993.tb18189.x. [DOI] [PubMed] [Google Scholar]
  95. García-Horsman J. A., Barquera B., Rumbley J., Ma J., Gennis R. B. The superfamily of heme-copper respiratory oxidases. J Bacteriol. 1994 Sep;176(18):5587–5600. doi: 10.1128/jb.176.18.5587-5600.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. García-Horsman J. A., Berry E., Shapleigh J. P., Alben J. O., Gennis R. B. A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA. Biochemistry. 1994 Mar 15;33(10):3113–3119. doi: 10.1021/bi00176a046. [DOI] [PubMed] [Google Scholar]
  97. Gennis R. B., Barquera B., Hacker B., Van Doren S. R., Arnaud S., Crofts A. R., Davidson E., Gray K. A., Daldal F. The bc1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. J Bioenerg Biomembr. 1993 Jun;25(3):195–209. doi: 10.1007/BF00762582. [DOI] [PubMed] [Google Scholar]
  98. Georgiou C. D., Fang H., Gennis R. B. Identification of the cydC locus required for expression of the functional form of the cytochrome d terminal oxidase complex in Escherichia coli. J Bacteriol. 1987 May;169(5):2107–2112. doi: 10.1128/jb.169.5.2107-2112.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Gerhus E., Steinrücke P., Ludwig B. Paracoccus denitrificans cytochrome c1 gene replacement mutants. J Bacteriol. 1990 May;172(5):2392–2400. doi: 10.1128/jb.172.5.2392-2400.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Gilles-Gonzalez M. A., Gonzalez G., Perutz M. F., Kiger L., Marden M. C., Poyart C. Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. Biochemistry. 1994 Jul 5;33(26):8067–8073. doi: 10.1021/bi00192a011. [DOI] [PubMed] [Google Scholar]
  101. Goldman B. S., Beckman D. L., Bali A., Monika E. M., Gabbert K. K., Kranz R. G. Molecular and immunological analysis of an ABC transporter complex required for cytochrome c biogenesis. J Mol Biol. 1997 May 16;268(4):724–738. doi: 10.1006/jmbi.1997.0992. [DOI] [PubMed] [Google Scholar]
  102. Goldman B. S., Gabbert K. K., Kranz R. G. The temperature-sensitive growth and survival phenotypes of Escherichia coli cydDC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents. J Bacteriol. 1996 Nov;178(21):6348–6351. doi: 10.1128/jb.178.21.6348-6351.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Goldman B. S., Gabbert K. K., Kranz R. G. Use of heme reporters for studies of cytochrome biosynthesis and heme transport. J Bacteriol. 1996 Nov;178(21):6338–6347. doi: 10.1128/jb.178.21.6338-6347.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Gonzales D. H., Neupert W. Biogenesis of mitochondrial c-type cytochromes. J Bioenerg Biomembr. 1990 Dec;22(6):753–768. doi: 10.1007/BF00786929. [DOI] [PubMed] [Google Scholar]
  105. Goodwin P. M., Anthony C. The biosynthesis of periplasmic electron transport proteins in methylotrophic bacteria. Microbiology. 1995 May;141(Pt 5):1051–1064. doi: 10.1099/13500872-141-5-1051. [DOI] [PubMed] [Google Scholar]
  106. Gray K. A., Davidson E., Daldal F. Mutagenesis of methionine-183 drastically affects the physicochemical properties of cytochrome c1 of the bc1 complex of Rhodobacter capsulatus. Biochemistry. 1992 Dec 1;31(47):11864–11873. doi: 10.1021/bi00162a027. [DOI] [PubMed] [Google Scholar]
  107. Gray K. A., Grooms M., Myllykallio H., Moomaw C., Slaughter C., Daldal F. Rhodobacter capsulatus contains a novel cb-type cytochrome c oxidase without a CuA center. Biochemistry. 1994 Mar 15;33(10):3120–3127. doi: 10.1021/bi00176a047. [DOI] [PubMed] [Google Scholar]
  108. Green G. N., Fang H., Lin R. J., Newton G., Mather M., Georgiou C. D., Gennis R. B. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. J Biol Chem. 1988 Sep 15;263(26):13138–13143. [PubMed] [Google Scholar]
  109. Green G. N., Kranz J. E., Gennis R. B. Cloning the cyd gene locus coding for the cytochrome d complex of Escherichia coli. Gene. 1984 Dec;32(1-2):99–106. doi: 10.1016/0378-1119(84)90037-4. [DOI] [PubMed] [Google Scholar]
  110. Grovc J., Busby S., Cole J. The role of the genes nrf EFG and ccmFH in cytochrome c biosynthesis in Escherichia coli. Mol Gen Genet. 1996 Sep 13;252(3):332–341. doi: 10.1007/BF02173779. [DOI] [PubMed] [Google Scholar]
  111. Grove J., Tanapongpipat S., Thomas G., Griffiths L., Crooke H., Cole J. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Mol Microbiol. 1996 Feb;19(3):467–481. doi: 10.1046/j.1365-2958.1996.383914.x. [DOI] [PubMed] [Google Scholar]
  112. Guilhot C., Jander G., Martin N. L., Beckwith J. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9895–9899. doi: 10.1073/pnas.92.21.9895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Haltia T., Finel M., Harms N., Nakari T., Raitio M., Wikström M., Saraste M. Deletion of the gene for subunit III leads to defective assembly of bacterial cytochrome oxidase. EMBO J. 1989 Dec 1;8(12):3571–3579. doi: 10.1002/j.1460-2075.1989.tb08529.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Haltia T., Puustinen A., Finel M. The Paracoccus denitrificans cytochrome aa3 has a third subunit. Eur J Biochem. 1988 Mar 15;172(3):543–546. doi: 10.1111/j.1432-1033.1988.tb13923.x. [DOI] [PubMed] [Google Scholar]
  115. Hanson M. S., Pelzel S. E., Latimer J., Muller-Eberhard U., Hansen E. J. Identification of a genetic locus of Haemophilus influenzae type b necessary for the binding and utilization of heme bound to human hemopexin. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1973–1977. doi: 10.1073/pnas.89.5.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Hansson M., Hederstedt L. Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX. J Bacteriol. 1994 Oct;176(19):5962–5970. doi: 10.1128/jb.176.19.5962-5970.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Hansson M., Hederstedt L. Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis. Eur J Biochem. 1994 Feb 15;220(1):201–208. doi: 10.1111/j.1432-1033.1994.tb18615.x. [DOI] [PubMed] [Google Scholar]
  118. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  119. Hederstedt L., Bergman T., Jörnvall H. Processing of Bacillus subtilis succinate dehydrogenase and cytochrome b-558 polypeptides. Lack of covalently bound flavin in the Bacillus enzyme expressed in Escherichia coli. FEBS Lett. 1987 Mar 23;213(2):385–390. doi: 10.1016/0014-5793(87)81527-2. [DOI] [PubMed] [Google Scholar]
  120. Hederstedt L. Molecular properties, genetics, and biosynthesis of Bacillus subtilis succinate dehydrogenase complex. Methods Enzymol. 1986;126:399–414. doi: 10.1016/s0076-6879(86)26040-1. [DOI] [PubMed] [Google Scholar]
  121. Hederstedt L., Rutberg L. Biosynthesis and membrane binding of succinate dehydrogenase in Bacillus subtilis. J Bacteriol. 1980 Dec;144(3):941–951. doi: 10.1128/jb.144.3.941-951.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Hederstedt L., Rutberg L. Succinate dehydrogenase--a comparative review. Microbiol Rev. 1981 Dec;45(4):542–555. doi: 10.1128/mr.45.4.542-555.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Heinzinger N. K., Fujimoto S. Y., Clark M. A., Moreno M. S., Barrett E. L. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol. 1995 May;177(10):2813–2820. doi: 10.1128/jb.177.10.2813-2820.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Heiss B., Frunzke K., Zumft W. G. Formation of the N-N bond from nitric oxide by a membrane-bound cytochrome bc complex of nitrate-respiring (denitrifying) Pseudomonas stutzeri. J Bacteriol. 1989 Jun;171(6):3288–3297. doi: 10.1128/jb.171.6.3288-3297.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Henderson D. P., Payne S. M. Characterization of the Vibrio cholerae outer membrane heme transport protein HutA: sequence of the gene, regulation of expression, and homology to the family of TonB-dependent proteins. J Bacteriol. 1994 Jun;176(11):3269–3277. doi: 10.1128/jb.176.11.3269-3277.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Henderson D. P., Payne S. M. Cloning and characterization of the Vibrio cholerae genes encoding the utilization of iron from haemin and haemoglobin. Mol Microbiol. 1993 Feb;7(3):461–469. doi: 10.1111/j.1365-2958.1993.tb01137.x. [DOI] [PubMed] [Google Scholar]
  127. Hill J. J., Alben J. O., Gennis R. B. Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5863–5867. doi: 10.1073/pnas.90.12.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Hochkoeppler A., Jenney F. E., Jr, Lang S. E., Zannoni D., Daldal F. Membrane-associated cytochrome cy of Rhodobacter capsulatus is an electron carrier from the cytochrome bc1 complex to the cytochrome c oxidase during respiration. J Bacteriol. 1995 Feb;177(3):608–613. doi: 10.1128/jb.177.3.608-613.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Holm L., Saraste M., Wikström M. Structural models of the redox centres in cytochrome oxidase. EMBO J. 1987 Sep;6(9):2819–2823. doi: 10.1002/j.1460-2075.1987.tb02578.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem. 1979 Oct 10;254(19):9627–9632. [PubMed] [Google Scholar]
  131. Hosler J. P., Ferguson-Miller S., Calhoun M. W., Thomas J. W., Hill J., Lemieux L., Ma J., Georgiou C., Fetter J., Shapleigh J. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo. J Bioenerg Biomembr. 1993 Apr;25(2):121–136. doi: 10.1007/BF00762854. [DOI] [PubMed] [Google Scholar]
  132. Huang C. J., Barrett E. L. Sequence analysis and expression of the Salmonella typhimurium asr operon encoding production of hydrogen sulfide from sulfite. J Bacteriol. 1991 Feb;173(4):1544–1553. doi: 10.1128/jb.173.4.1544-1553.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Hultgren S. J., Abraham S., Caparon M., Falk P., St Geme J. W., 3rd, Normark S. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell. 1993 Jun 4;73(5):887–901. doi: 10.1016/0092-8674(93)90269-v. [DOI] [PubMed] [Google Scholar]
  134. Hussain H., Grove J., Griffiths L., Busby S., Cole J. A seven-gene operon essential for formate-dependent nitrite reduction to ammonia by enteric bacteria. Mol Microbiol. 1994 Apr;12(1):153–163. doi: 10.1111/j.1365-2958.1994.tb01004.x. [DOI] [PubMed] [Google Scholar]
  135. Hyde S. C., Emsley P., Hartshorn M. J., Mimmack M. M., Gileadi U., Pearce S. R., Gallagher M. P., Gill D. R., Hubbard R. E., Higgins C. F. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature. 1990 Jul 26;346(6282):362–365. doi: 10.1038/346362a0. [DOI] [PubMed] [Google Scholar]
  136. Hägerhäll C., Aasa R., von Wachenfeldt C., Hederstedt L. Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II). Biochemistry. 1992 Aug 18;31(32):7411–7421. doi: 10.1021/bi00147a028. [DOI] [PubMed] [Google Scholar]
  137. Hägerhäll C., Hederstedt L. A structural model for the membrane-integral domain of succinate: quinone oxidoreductases. FEBS Lett. 1996 Jun 24;389(1):25–31. doi: 10.1016/0014-5793(96)00529-7. [DOI] [PubMed] [Google Scholar]
  138. Iobbi-Nivol C., Crooke H., Griffiths L., Grove J., Hussain H., Pommier J., Mejean V., Cole J. A. A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):89–94. doi: 10.1111/j.1574-6968.1994.tb06872.x. [DOI] [PubMed] [Google Scholar]
  139. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  140. Iwata S., Saynovits M., Link T. A., Michel H. Structure of a water soluble fragment of the 'Rieske' iron-sulfur protein of the bovine heart mitochondrial cytochrome bc1 complex determined by MAD phasing at 1.5 A resolution. Structure. 1996 May 15;4(5):567–579. doi: 10.1016/s0969-2126(96)00062-7. [DOI] [PubMed] [Google Scholar]
  141. Jacobs M., Andersen J. B., Kontinen V., Sarvas M. Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro-sequences. Mol Microbiol. 1993 May;8(5):957–966. doi: 10.1111/j.1365-2958.1993.tb01640.x. [DOI] [PubMed] [Google Scholar]
  142. Jahn D., Verkamp E., Söll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci. 1992 Jun;17(6):215–218. doi: 10.1016/0968-0004(92)90380-r. [DOI] [PubMed] [Google Scholar]
  143. Jenney F. E., Jr, Daldal F. A novel membrane-associated c-type cytochrome, cyt cy, can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J. 1993 Apr;12(4):1283–1292. doi: 10.1002/j.1460-2075.1993.tb05773.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Jenney F. E., Jr, Prince R. C., Daldal F. The membrane-bound cytochrome cy of Rhodobacter capsulatus can serve as an electron donor to the photosynthetic reaction of Rhodobacter sphaeroides. Biochim Biophys Acta. 1996 Feb 15;1273(2):159–164. doi: 10.1016/0005-2728(95)00137-9. [DOI] [PubMed] [Google Scholar]
  145. Jungnickel B., Rapoport T. A., Hartmann E. Protein translocation: common themes from bacteria to man. FEBS Lett. 1994 Jun 6;346(1):73–77. doi: 10.1016/0014-5793(94)00367-x. [DOI] [PubMed] [Google Scholar]
  146. Jüngst A., Wakabayashi S., Matsubara H., Zumft W. G. The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett. 1991 Feb 25;279(2):205–209. doi: 10.1016/0014-5793(91)80150-2. [DOI] [PubMed] [Google Scholar]
  147. Kahn D., David M., Domergue O., Daveran M. L., Ghai J., Hirsch P. R., Batut J. Rhizobium meliloti fixGHI sequence predicts involvement of a specific cation pump in symbiotic nitrogen fixation. J Bacteriol. 1989 Feb;171(2):929–939. doi: 10.1128/jb.171.2.929-939.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Kallas T., Spiller S., Malkin R. Primary structure of cotranscribed genes encoding the Rieske Fe-S and cytochrome f proteins of the cyanobacterium Nostoc PCC 7906. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5794–5798. doi: 10.1073/pnas.85.16.5794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Kamitani S., Akiyama Y., Ito K. Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J. 1992 Jan;11(1):57–62. doi: 10.1002/j.1460-2075.1992.tb05027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Karkhoff-Schweizer R. R., Bruschi M., Voordouw G. Expression of the gamma-subunit gene of desulfoviridin-type dissimilatory sulfite reductase and of the alpha- and beta-subunit genes is not coordinately regulated. Eur J Biochem. 1993 Feb 1;211(3):501–507. doi: 10.1111/j.1432-1033.1993.tb17576.x. [DOI] [PubMed] [Google Scholar]
  151. Karkhoff-Schweizer R. R., Huber D. P., Voordouw G. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Environ Microbiol. 1995 Jan;61(1):290–296. doi: 10.1128/aem.61.1.290-296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Kawasaki S., Arai H., Igarashi Y., Kodama T. Sequencing and characterization of the downstream region of the genes encoding nitrite reductase and cytochrome c-551 (nirSM) from Pseudomonas aeruginosa: identification of the gene necessary for biosynthesis of heme d1. Gene. 1995 Dec 29;167(1-2):87–91. doi: 10.1016/0378-1119(95)00641-9. [DOI] [PubMed] [Google Scholar]
  153. Kaysser T. M., Ghaim J. B., Georgiou C., Gennis R. B. Methionine-393 is an axial ligand of the heme b558 component of the cytochrome bd ubiquinol oxidase from Escherichia coli. Biochemistry. 1995 Oct 17;34(41):13491–13501. doi: 10.1021/bi00041a029. [DOI] [PubMed] [Google Scholar]
  154. Keefe R. G., Maier R. J. Purification and characterization of an O2-utilizing cytochrome-c oxidase complex from Bradyrhizobium japonicum bacteroid membranes. Biochim Biophys Acta. 1993 Nov 2;1183(1):91–104. doi: 10.1016/0005-2728(93)90008-4. [DOI] [PubMed] [Google Scholar]
  155. Kelly M. J., Poole R. K., Yates M. G., Kennedy C. Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol. 1990 Oct;172(10):6010–6019. doi: 10.1128/jb.172.10.6010-6019.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Kereszt A., Slaska-Kiss K., Putnoky P., Banfalvi Z., Kondorosi A. The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for "respiratory" nitrate reduction ex planta and for nitrogen fixation during symbiosis. Mol Gen Genet. 1995 Apr 10;247(1):39–47. doi: 10.1007/BF00425819. [DOI] [PubMed] [Google Scholar]
  157. Kim P. S., Baldwin R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem. 1982;51:459–489. doi: 10.1146/annurev.bi.51.070182.002331. [DOI] [PubMed] [Google Scholar]
  158. Kishigami S., Kanaya E., Kikuchi M., Ito K. DsbA-DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA. J Biol Chem. 1995 Jul 21;270(29):17072–17074. doi: 10.1074/jbc.270.29.17072. [DOI] [PubMed] [Google Scholar]
  159. Kita K., Vibat C. R., Meinhardt S., Guest J. R., Gennis R. B. One-step purification from Escherichia coli of complex II (succinate: ubiquinone oxidoreductase) associated with succinate-reducible cytochrome b556. J Biol Chem. 1989 Feb 15;264(5):2672–2677. [PubMed] [Google Scholar]
  160. Konishi K., Van Doren S. R., Kramer D. M., Crofts A. R., Gennis R. B. Preparation and characterization of the water-soluble heme-binding domain of cytochrome c1 from the Rhodobacter sphaeroides bc1 complex. J Biol Chem. 1991 Aug 5;266(22):14270–14276. [PubMed] [Google Scholar]
  161. Krafft T., Bokranz M., Klimmek O., Schröder I., Fahrenholz F., Kojro E., Kröger A. Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur J Biochem. 1992 Jun 1;206(2):503–510. doi: 10.1111/j.1432-1033.1992.tb16953.x. [DOI] [PubMed] [Google Scholar]
  162. Krummeck G., Rödel G. Yeast SCO1 protein is required for a post-translational step in the accumulation of mitochondrial cytochrome c oxidase subunits I and II. Curr Genet. 1990 Jul;18(1):13–15. doi: 10.1007/BF00321109. [DOI] [PubMed] [Google Scholar]
  163. Kumamoto C. A. Molecular chaperones and protein translocation across the Escherichia coli inner membrane. Mol Microbiol. 1991 Jan;5(1):19–22. doi: 10.1111/j.1365-2958.1991.tb01821.x. [DOI] [PubMed] [Google Scholar]
  164. Kurowski B., Ludwig B. The genes of the Paracoccus denitrificans bc1 complex. Nucleotide sequence and homologies between bacterial and mitochondrial subunits. J Biol Chem. 1987 Oct 5;262(28):13805–13811. [PubMed] [Google Scholar]
  165. Lang K., Schmid F. X., Fischer G. Catalysis of protein folding by prolyl isomerase. Nature. 1987 Sep 17;329(6136):268–270. doi: 10.1038/329268a0. [DOI] [PubMed] [Google Scholar]
  166. Lang S. E., Jenney F. E., Jr, Daldal F. Rhodobacter capsulatus CycH: a bipartite gene product with pleiotropic effects on the biogenesis of structurally different c-type cytochromes. J Bacteriol. 1996 Sep;178(17):5279–5290. doi: 10.1128/jb.178.17.5279-5290.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Lee B. C. Quelling the red menace: haem capture by bacteria. Mol Microbiol. 1995 Nov;18(3):383–390. doi: 10.1111/j.1365-2958.1995.mmi_18030383.x. [DOI] [PubMed] [Google Scholar]
  168. Lemieux L. J., Calhoun M. W., Thomas J. W., Ingledew W. J., Gennis R. B. Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis. J Biol Chem. 1992 Jan 25;267(3):2105–2113. [PubMed] [Google Scholar]
  169. Lemire B. D., Robinson J. J., Weiner J. H. Identification of membrane anchor polypeptides of Escherichia coli fumarate reductase. J Bacteriol. 1982 Dec;152(3):1126–1131. doi: 10.1128/jb.152.3.1126-1131.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Liu J., Walsh C. T. Peptidyl-prolyl cis-trans-isomerase from Escherichia coli: a periplasmic homolog of cyclophilin that is not inhibited by cyclosporin A. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4028–4032. doi: 10.1073/pnas.87.11.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Ljungdahl P. O., Pennoyer J. D., Robertson D. E., Trumpower B. L. Purification of highly active cytochrome bc1 complexes from phylogenetically diverse species by a single chromatographic procedure. Biochim Biophys Acta. 1987 May 6;891(3):227–241. doi: 10.1016/0005-2728(87)90218-0. [DOI] [PubMed] [Google Scholar]
  172. Loferer H., Bott M., Hennecke H. Bradyrhizobium japonicum TlpA, a novel membrane-anchored thioredoxin-like protein involved in the biogenesis of cytochrome aa3 and development of symbiosis. EMBO J. 1993 Sep;12(9):3373–3383. doi: 10.1002/j.1460-2075.1993.tb06011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Loferer H., Hennecke H. Expression, purification and functional properties of a soluble form of Bradyrhizobium japonicum TlpA, a thioredoxin-like protein. Eur J Biochem. 1994 Jul 15;223(2):339–344. doi: 10.1111/j.1432-1033.1994.tb18999.x. [DOI] [PubMed] [Google Scholar]
  174. Loferer H., Hennecke H. Protein disulphide oxidoreductases in bacteria. Trends Biochem Sci. 1994 Apr;19(4):169–171. doi: 10.1016/0968-0004(94)90279-8. [DOI] [PubMed] [Google Scholar]
  175. Loferer H., Wunderlich M., Hennecke H., Glockshuber R. A bacterial thioredoxin-like protein that is exposed to the periplasm has redox properties comparable with those of cytoplasmic thioredoxins. J Biol Chem. 1995 Nov 3;270(44):26178–26183. doi: 10.1074/jbc.270.44.26178. [DOI] [PubMed] [Google Scholar]
  176. Ludwig B., Schatz G. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans. Proc Natl Acad Sci U S A. 1980 Jan;77(1):196–200. doi: 10.1073/pnas.77.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Lund K., DeMoss J. A. Association-dissociation behavior and subunit structure of heat-released nitrate reductase from Escherichia coli. J Biol Chem. 1976 Apr 25;251(8):2207–2216. [PubMed] [Google Scholar]
  178. Magnusson K., Philips M. K., Guest J. R., Rutberg L. Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex. J Bacteriol. 1986 Jun;166(3):1067–1071. doi: 10.1128/jb.166.3.1067-1071.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Maier T., Jacobi A., Sauter M., Böck A. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J Bacteriol. 1993 Feb;175(3):630–635. doi: 10.1128/jb.175.3.630-635.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Majewski C., Trebst A. The pet genes of Rhodospirillum rubrum: cloning and sequencing of the genes for the cytochrome bc1-complex. Mol Gen Genet. 1990 Dec;224(3):373–382. doi: 10.1007/BF00262431. [DOI] [PubMed] [Google Scholar]
  181. Malakhov M., Wada H., Los D., Murata N. The coxD gene for heme O synthase in Synechocystis. Biochim Biophys Acta. 1996 Feb 15;1273(2):84–86. doi: 10.1016/0005-2728(95)00148-4. [DOI] [PubMed] [Google Scholar]
  182. Mandon K., Kaminski P. A., Elmerich C. Functional analysis of the fixNOQP region of Azorhizobium caulinodans. J Bacteriol. 1994 May;176(9):2560–2568. doi: 10.1128/jb.176.9.2560-2568.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Mandon K., Kaminski P. A., Mougel C., Desnoues N., Dreyfus B., Elmerich C. Role of the fixGHI region of Azorhizobium caulinodans in free-living and symbiotic nitrogen fixation. FEMS Microbiol Lett. 1993 Dec 1;114(2):185–189. doi: 10.1111/j.1574-6968.1993.tb06571.x. [DOI] [PubMed] [Google Scholar]
  184. Mather M. W., Springer P., Hensel S., Buse G., Fee J. A. Cytochrome oxidase genes from Thermus thermophilus. Nucleotide sequence of the fused gene and analysis of the deduced primary structures for subunits I and III of cytochrome caa3. J Biol Chem. 1993 Mar 15;268(8):5395–5408. [PubMed] [Google Scholar]
  185. McRee D. E., Richardson D. C., Richardson J. S., Siegel L. M. The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase. J Biol Chem. 1986 Aug 5;261(22):10277–10281. [PubMed] [Google Scholar]
  186. Metheringham R., Griffiths L., Crooke H., Forsythe S., Cole J. An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12. Arch Microbiol. 1995 Oct;164(4):301–307. doi: 10.1007/BF02529965. [DOI] [PubMed] [Google Scholar]
  187. Metheringham R., Tyson K. L., Crooke H., Missiakas D., Raina S., Cole J. A. Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol Gen Genet. 1996 Nov 27;253(1-2):95–102. doi: 10.1007/pl00013815. [DOI] [PubMed] [Google Scholar]
  188. Mills M., Payne S. M. Genetics and regulation of heme iron transport in Shigella dysenteriae and detection of an analogous system in Escherichia coli O157:H7. J Bacteriol. 1995 Jun;177(11):3004–3009. doi: 10.1128/jb.177.11.3004-3009.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Minagawa J., Mogi T., Gennis R. B., Anraku Y. Identification of heme and copper ligands in subunit I of the cytochrome bo complex in Escherichia coli. J Biol Chem. 1992 Jan 25;267(3):2096–2104. [PubMed] [Google Scholar]
  190. Minghetti K. C., Goswitz V. C., Gabriel N. E., Hill J. J., Barassi C. A., Georgiou C. D., Chan S. I., Gennis R. B. Modified, large-scale purification of the cytochrome o complex (bo-type oxidase) of Escherichia coli yields a two heme/one copper terminal oxidase with high specific activity. Biochemistry. 1992 Aug 4;31(30):6917–6924. doi: 10.1021/bi00145a008. [DOI] [PubMed] [Google Scholar]
  191. Missiakas D., Betton J. M., Raina S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol. 1996 Aug;21(4):871–884. doi: 10.1046/j.1365-2958.1996.561412.x. [DOI] [PubMed] [Google Scholar]
  192. Missiakas D., Georgopoulos C., Raina S. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7084–7088. doi: 10.1073/pnas.90.15.7084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Missiakas D., Georgopoulos C., Raina S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J. 1994 Apr 15;13(8):2013–2020. doi: 10.1002/j.1460-2075.1994.tb06471.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Missiakas D., Raina S. Protein folding in the bacterial periplasm. J Bacteriol. 1997 Apr;179(8):2465–2471. doi: 10.1128/jb.179.8.2465-2471.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Missiakas D., Schwager F., Raina S. Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. EMBO J. 1995 Jul 17;14(14):3415–3424. doi: 10.1002/j.1460-2075.1995.tb07347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Mogi T., Saiki K., Anraku Y. Biosynthesis and functional role of haem O and haem A. Mol Microbiol. 1994 Nov;14(3):391–398. doi: 10.1111/j.1365-2958.1994.tb02174.x. [DOI] [PubMed] [Google Scholar]
  197. Moshiri F., Chawla A., Maier R. J. Cloning, characterization, and expression in Escherichia coli of the genes encoding the cytochrome d oxidase complex from Azotobacter vinelandii. J Bacteriol. 1991 Oct;173(19):6230–6241. doi: 10.1128/jb.173.19.6230-6241.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Mueller J. P., Taber H. W. Isolation and sequence of ctaA, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis. J Bacteriol. 1989 Sep;171(9):4967–4978. doi: 10.1128/jb.171.9.4967-4978.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Mukai K., Wakabayashi S., Matsubara H. Molecular cloning and nucleotide sequence of a cDNA encoding Euglena gracilis cytochrome c1. J Biochem. 1989 Sep;106(3):479–482. doi: 10.1093/oxfordjournals.jbchem.a122877. [DOI] [PubMed] [Google Scholar]
  200. Munro A. W., Lindsay J. G. Bacterial cytochromes P-450. Mol Microbiol. 1996 Jun;20(6):1115–1125. doi: 10.1111/j.1365-2958.1996.tb02632.x. [DOI] [PubMed] [Google Scholar]
  201. Murphy M. J., Siegel L. M., Kamin H., DerVartanian D. V., Lee J. P., LeGall J., Peck H. D., Jr An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases. Biochem Biophys Res Commun. 1973 Sep 5;54(1):82–88. doi: 10.1016/0006-291x(73)90891-7. [DOI] [PubMed] [Google Scholar]
  202. Myers C. R., Myers J. M. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol. 1992 Jun;174(11):3429–3438. doi: 10.1128/jb.174.11.3429-3438.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Myllykallio H., Jenney F. E., Jr, Moomaw C. R., Slaughter C. A., Daldal F. Cytochrome c(y) of Rhodobacter capsulatus is attached to the cytoplasmic membrane by an uncleaved signal sequence-like anchor. J Bacteriol. 1997 Apr;179(8):2623–2631. doi: 10.1128/jb.179.8.2623-2631.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Méjean V., Iobbi-Nivol C., Lepelletier M., Giordano G., Chippaux M., Pascal M. C. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol. 1994 Mar;11(6):1169–1179. doi: 10.1111/j.1365-2958.1994.tb00393.x. [DOI] [PubMed] [Google Scholar]
  205. Nagata K., Tsukita S., Tamura T., Sone N. A cb-type cytochrome-c oxidase terminates the respiratory chain in Helicobacter pylori. Microbiology. 1996 Jul;142(Pt 7):1757–1763. doi: 10.1099/13500872-142-7-1757. [DOI] [PubMed] [Google Scholar]
  206. Nakai T., Yasuhara T., Fujiki Y., Ohashi A. Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol Cell Biol. 1995 Aug;15(8):4441–4452. doi: 10.1128/mcb.15.8.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Nakamura H., Yamato I., Anraku Y., Lemieux L., Gennis R. B. Expression of cyoA and cyoB demonstrates that the CO-binding heme component of the Escherichia coli cytochrome o complex is in subunit I. J Biol Chem. 1990 Jul 5;265(19):11193–11197. [PubMed] [Google Scholar]
  208. Nakamura K., Yamaki M., Sarada M., Nakayama S., Vibat C. R., Gennis R. B., Nakayashiki T., Inokuchi H., Kojima S., Kita K. Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli. J Biol Chem. 1996 Jan 5;271(1):521–527. doi: 10.1074/jbc.271.1.521. [DOI] [PubMed] [Google Scholar]
  209. Neidle E. L., Kaplan S. Rhodobacter sphaeroides rdxA, a homolog of Rhizobium meliloti fixG, encodes a membrane protein which may bind cytoplasmic [4Fe-4S] clusters. J Bacteriol. 1992 Oct;174(20):6444–6454. doi: 10.1128/jb.174.20.6444-6454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Newton G., Gennis R. B. In vivo assembly of the cytochrome d terminal oxidase complex of Escherichia coli from genes encoding the two subunits expressed on separate plasmids. Biochim Biophys Acta. 1991 May 2;1089(1):8–12. doi: 10.1016/0167-4781(91)90077-y. [DOI] [PubMed] [Google Scholar]
  211. Newton G., Yun C. H., Gennis R. B. Analysis of the topology of the cytochrome d terminal oxidase complex of Escherichia coli by alkaline phosphatase fusions. Mol Microbiol. 1991 Oct;5(10):2511–2518. doi: 10.1111/j.1365-2958.1991.tb02097.x. [DOI] [PubMed] [Google Scholar]
  212. Nicholson D. W., Hergersberg C., Neupert W. Role of cytochrome c heme lyase in the import of cytochrome c into mitochondria. J Biol Chem. 1988 Dec 15;263(35):19034–19042. [PubMed] [Google Scholar]
  213. Nicholson D. W., Köhler H., Neupert W. Import of cytochrome c into mitochondria. Cytochrome c heme lyase. Eur J Biochem. 1987 Apr 1;164(1):147–157. doi: 10.1111/j.1432-1033.1987.tb11006.x. [DOI] [PubMed] [Google Scholar]
  214. Nicholson D. W., Neupert W. Import of cytochrome c into mitochondria: reduction of heme, mediated by NADH and flavin nucleotides, is obligatory for its covalent linkage to apocytochrome c. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4340–4344. doi: 10.1073/pnas.86.12.4340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Nicholson D. W., Stuart R. A., Neupert W. Biogenesis of cytochrome c1. Role of cytochrome c1 heme lyase and of the two proteolytic processing steps during import into mitochondria. J Biol Chem. 1989 Jun 15;264(17):10156–10168. [PubMed] [Google Scholar]
  216. Nobrega F. G., Nobrega M. P., Tzagoloff A. BCS1, a novel gene required for the expression of functional Rieske iron-sulfur protein in Saccharomyces cerevisiae. EMBO J. 1992 Nov;11(11):3821–3829. doi: 10.1002/j.1460-2075.1992.tb05474.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. O'Brian M. R. Heme synthesis in the rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments. J Bacteriol. 1996 May;178(9):2471–2478. doi: 10.1128/jb.178.9.2471-2478.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Oden K. L., Gennis R. B. Isolation and characterization of a new class of cytochrome d terminal oxidase mutants of Escherichia coli. J Bacteriol. 1991 Oct;173(19):6174–6183. doi: 10.1128/jb.173.19.6174-6183.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Odermatt A., Suter H., Krapf R., Solioz M. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem. 1993 Jun 15;268(17):12775–12779. [PubMed] [Google Scholar]
  220. Page M. D., Ferguson S. J. A bacterial c-type cytochrome can be translocated to the periplasm as an apo form; the biosynthesis of cytochrome cd1 (nitrite reductase) from Paracoccus denitrificans. Mol Microbiol. 1989 May;3(5):653–661. doi: 10.1111/j.1365-2958.1989.tb00213.x. [DOI] [PubMed] [Google Scholar]
  221. Page M. D., Ferguson S. J. Apo forms of cytochrome c550 and cytochrome cd1 are translocated to the periplasm of Paracoccus denitrificans in the absence of haem incorporation caused either mutation or inhibition of haem synthesis. Mol Microbiol. 1990 Jul;4(7):1181–1192. doi: 10.1111/j.1365-2958.1990.tb00693.x. [DOI] [PubMed] [Google Scholar]
  222. Page M. D., Ferguson S. J. Cloning and sequence analysis of cycH gene from Paracoccus denitrificans: the cycH gene product is required for assembly of all c-type cytochromes, including cytochrome c1. Mol Microbiol. 1995 Jan;15(2):307–318. doi: 10.1111/j.1365-2958.1995.tb02245.x. [DOI] [PubMed] [Google Scholar]
  223. Page M. D., Ferguson S. J. Paracoccus denitrificans CcmG is a periplasmic protein-disulphide oxidoreductase required for c- and aa3-type cytochrome biogenesis; evidence for a reductase role in vivo. Mol Microbiol. 1997 Jun;24(5):977–990. doi: 10.1046/j.1365-2958.1997.4061775.x. [DOI] [PubMed] [Google Scholar]
  224. Page M. D., Pearce D. A., Norris H. A., Ferguson S. J. The Paracoccus denitrificans ccmA, B and C genes: cloning and sequencing, and analysis of the potential of their products to form a haem or apo- c-type cytochrome transporter. Microbiology. 1997 Feb;143(Pt 2):563–576. doi: 10.1099/00221287-143-2-563. [DOI] [PubMed] [Google Scholar]
  225. Palmedo G., Seither P., Körner H., Matthews J. C., Burkhalter R. S., Timkovich R., Zumft W. G. Resolution of the nirD locus for heme d1 synthesis of cytochrome cd1 (respiratory nitrite reductase) from Pseudomonas stutzeri. Eur J Biochem. 1995 Sep 15;232(3):737–746. [PubMed] [Google Scholar]
  226. Pearce D. A., Sherman F. Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation of yme1. J Biol Chem. 1995 Sep 8;270(36):20879–20882. doi: 10.1074/jbc.270.36.20879. [DOI] [PubMed] [Google Scholar]
  227. Pennoyer J. D., Ohnishi T., Trumpower B. L. Purification and properties of succinate-ubiquinone oxidoreductase complex from Paracoccus denitrificans. Biochim Biophys Acta. 1988 Sep 14;935(2):195–207. doi: 10.1016/0005-2728(88)90216-2. [DOI] [PubMed] [Google Scholar]
  228. Peterson J., Vibat C., Gennis R. B. Identification of the axial heme ligands of cytochrome b556 in succinate: ubiquinone oxidoreductase from Escherichia coli. FEBS Lett. 1994 Nov 28;355(2):155–156. doi: 10.1016/0014-5793(94)01189-3. [DOI] [PubMed] [Google Scholar]
  229. Pfeifer K., Kim K. S., Kogan S., Guarente L. Functional dissection and sequence of yeast HAP1 activator. Cell. 1989 Jan 27;56(2):291–301. doi: 10.1016/0092-8674(89)90903-3. [DOI] [PubMed] [Google Scholar]
  230. Phillips M. K., Hederstedt L., Hasnain S., Rutberg L., Guest J. R. Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol. 1987 Feb;169(2):864–873. doi: 10.1128/jb.169.2.864-873.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Pierik A. J., Duyvis M. G., van Helvoort J. M., Wolbert R. B., Hagen W. R. The third subunit of desulfoviridin-type dissimilatory sulfite reductases. Eur J Biochem. 1992 Apr 1;205(1):111–115. doi: 10.1111/j.1432-1033.1992.tb16757.x. [DOI] [PubMed] [Google Scholar]
  232. Pollock W. B., Chemerika P. J., Forrest M. E., Beatty J. T., Voordouw G. Expression of the gene encoding cytochrome c3 from Desulfovibrio vulgaris (Hildenborough) in Escherichia coli: export and processing of the apoprotein. J Gen Microbiol. 1989 Aug;135(8):2319–2328. doi: 10.1099/00221287-135-8-2319. [DOI] [PubMed] [Google Scholar]
  233. Poole R. K., Baines B. S., Appleby C. A. Haemoprotein b-590 (Escherichia coli), a reducible catalase and peroxidase: evidence for its close relationship to hydroperoxidase I and a 'cytochrome a1b' preparation. J Gen Microbiol. 1986 Jun;132(6):1525–1539. doi: 10.1099/00221287-132-6-1525. [DOI] [PubMed] [Google Scholar]
  234. Poole R. K., Gibson F., Wu G. The cydD gene product, component of a heterodimeric ABC transporter, is required for assembly of periplasmic cytochrome c and of cytochrome bd in Escherichia coli. FEMS Microbiol Lett. 1994 Apr 1;117(2):217–223. doi: 10.1111/j.1574-6968.1994.tb06768.x. [DOI] [PubMed] [Google Scholar]
  235. Poole R. K., Hatch L., Cleeter M. W., Gibson F., Cox G. B., Wu G. Cytochrome bd biosynthesis in Escherichia coli: the sequences of the cydC and cydD genes suggest that they encode the components of an ABC membrane transporter. Mol Microbiol. 1993 Oct;10(2):421–430. [PubMed] [Google Scholar]
  236. Poole R. K., Williams H. D., Downie J. A., Gibson F. Mutations affecting the cytochrome d-containing oxidase complex of Escherichia coli K12: identification and mapping of a fourth locus, cydD. J Gen Microbiol. 1989 Jul;135(7):1865–1874. doi: 10.1099/00221287-135-7-1865. [DOI] [PubMed] [Google Scholar]
  237. Poulos T. L., Finzel B. C., Gunsalus I. C., Wagner G. C., Kraut J. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem. 1985 Dec 25;260(30):16122–16130. [PubMed] [Google Scholar]
  238. Preisig O., Anthamatten D., Hennecke H. Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3309–3313. doi: 10.1073/pnas.90.8.3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Preisig O., Zufferey R., Hennecke H. The Bradyrhizobium japonicum fixGHIS genes are required for the formation of the high-affinity cbb3-type cytochrome oxidase. Arch Microbiol. 1996 May;165(5):297–305. doi: 10.1007/s002030050330. [DOI] [PubMed] [Google Scholar]
  240. Preisig O., Zufferey R., Thöny-Meyer L., Appleby C. A., Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol. 1996 Mar;178(6):1532–1538. doi: 10.1128/jb.178.6.1532-1538.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Priest J. W., Hajduk S. L. Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome c1. J Biol Chem. 1992 Oct 5;267(28):20188–20195. [PubMed] [Google Scholar]
  242. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Quirk P. G., Hicks D. B., Krulwich T. A. Cloning of the cta operon from alkaliphilic Bacillus firmus OF4 and characterization of the pH-regulated cytochrome caa3 oxidase it encodes. J Biol Chem. 1993 Jan 5;268(1):678–685. [PubMed] [Google Scholar]
  244. Raitio M., Jalli T., Saraste M. Isolation and analysis of the genes for cytochrome c oxidase in Paracoccus denitrificans. EMBO J. 1987 Sep;6(9):2825–2833. doi: 10.1002/j.1460-2075.1987.tb02579.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Ramseier T. M., Winteler H. V., Hennecke H. Discovery and sequence analysis of bacterial genes involved in the biogenesis of c-type cytochromes. J Biol Chem. 1991 Apr 25;266(12):7793–7803. [PubMed] [Google Scholar]
  246. Rauhut R., Jäger A., Conrad C., Klug G. Identification and analysis of the rnc gene for RNase III in Rhodobacter capsulatus. Nucleic Acids Res. 1996 Apr 1;24(7):1246–1251. doi: 10.1093/nar/24.7.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Reid G. A., Haddock B. A., Ingledew W. J. Assembly of functional b-type cytochromes in membranes from a 5-aminolaevulinic acid-requiring mutant of Escherichia coli. FEBS Lett. 1981 Aug 31;131(2):346–350. doi: 10.1016/0014-5793(81)80400-0. [DOI] [PubMed] [Google Scholar]
  248. Reyes F., Roldán M. D., Klipp W., Castillo F., Moreno-Vivián C. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol. 1996 Mar;19(6):1307–1318. doi: 10.1111/j.1365-2958.1996.tb02475.x. [DOI] [PubMed] [Google Scholar]
  249. Rietsch A., Belin D., Martin N., Beckwith J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13048–13053. doi: 10.1073/pnas.93.23.13048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Ritz D., Bott M., Hennecke H. Formation of several bacterial c-type cytochromes requires a novel membrane-anchored protein that faces the periplasm. Mol Microbiol. 1993 Aug;9(4):729–740. doi: 10.1111/j.1365-2958.1993.tb01733.x. [DOI] [PubMed] [Google Scholar]
  251. Ritz D., Thöny-Meyer L., Hennecke H. The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum. Mol Gen Genet. 1995 Apr 10;247(1):27–38. doi: 10.1007/BF00425818. [DOI] [PubMed] [Google Scholar]
  252. Rudd K. E., Sofia H. J., Koonin E. V., Plunkett G., 3rd, Lazar S., Rouviere P. E. A new family of peptidyl-prolyl isomerases. Trends Biochem Sci. 1995 Jan;20(1):12–14. doi: 10.1016/s0968-0004(00)88940-9. [DOI] [PubMed] [Google Scholar]
  253. Saiki K., Mogi T., Anraku Y. Heme O biosynthesis in Escherichia coli: the cyoE gene in the cytochrome bo operon encodes a protoheme IX farnesyltransferase. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1491–1497. doi: 10.1016/0006-291x(92)90243-e. [DOI] [PubMed] [Google Scholar]
  254. Saiki K., Mogi T., Ogura K., Anraku Y. In vitro heme O synthesis by the cyoE gene product from Escherichia coli. J Biol Chem. 1993 Dec 15;268(35):26041–26044. [PubMed] [Google Scholar]
  255. Saiki K., Nakamura H., Mogi T., Anraku Y. Probing a role of subunit IV of the Escherichia coli bo-type ubiquinol oxidase by deletion and cross-linking analyses. J Biol Chem. 1996 Jun 28;271(26):15336–15340. doi: 10.1074/jbc.271.26.15336. [DOI] [PubMed] [Google Scholar]
  256. Sambongi Y., Ferguson S. J. Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds. FEBS Lett. 1996 Dec 2;398(2-3):265–268. doi: 10.1016/s0014-5793(96)01256-2. [DOI] [PubMed] [Google Scholar]
  257. Sambongi Y., Ferguson S. J. Specific thiol compounds complement deficiency in c-type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane-bound disulphide isomerase-like protein. FEBS Lett. 1994 Oct 24;353(3):235–238. doi: 10.1016/0014-5793(94)01053-6. [DOI] [PubMed] [Google Scholar]
  258. Sambongi Y., Ferguson S. J. Synthesis of holo Paracoccus denitrificans cytochrome c550 requires targeting to the periplasm whereas that of holo Hydrogenobacter thermophilus cytochrome c552 does not. Implications for c-type cytochrome biogenesis. FEBS Lett. 1994 Feb 28;340(1-2):65–70. doi: 10.1016/0014-5793(94)80174-6. [DOI] [PubMed] [Google Scholar]
  259. Sambongi Y., Stoll R., Ferguson S. J. Alteration of haem-attachment and signal-cleavage sites for Paracoccus denitrificans cytochrome C550 probes pathway of c-type cytochrome biogenesis in Escherichia coli. Mol Microbiol. 1996 Mar;19(6):1193–1204. doi: 10.1111/j.1365-2958.1996.tb02465.x. [DOI] [PubMed] [Google Scholar]
  260. Sanbongi Y., Yang J. H., Igarashi Y., Kodama T. Cloning, nucleotide sequence and expression of the cytochrome c-552 gene from Hydrogenobacter thermophilus. Eur J Biochem. 1991 May 23;198(1):7–12. doi: 10.1111/j.1432-1033.1991.tb15979.x. [DOI] [PubMed] [Google Scholar]
  261. Saraste M., Holm L., Lemieux L., Lübben M., van der Oost J. The happy family of cytochrome oxidases. Biochem Soc Trans. 1991 Aug;19(3):608–612. doi: 10.1042/bst0190608. [DOI] [PubMed] [Google Scholar]
  262. Saraste M., Metso T., Nakari T., Jalli T., Lauraeus M., Van der Oost J. The Bacillus subtilis cytochrome-c oxidase. Variations on a conserved protein theme. Eur J Biochem. 1991 Jan 30;195(2):517–525. doi: 10.1111/j.1432-1033.1991.tb15732.x. [DOI] [PubMed] [Google Scholar]
  263. Saraste M., Raitio M., Jalli T., Perämaa A. A gene in Paracoccus for subunit III of cytochrome oxidase. FEBS Lett. 1986 Sep 29;206(1):154–156. doi: 10.1016/0014-5793(86)81359-x. [DOI] [PubMed] [Google Scholar]
  264. Saraste M. Structural features of cytochrome oxidase. Q Rev Biophys. 1990 Nov;23(4):331–366. doi: 10.1017/s0033583500005588. [DOI] [PubMed] [Google Scholar]
  265. Sato-Watanabe M., Mogi T., Ogura T., Kitagawa T., Miyoshi H., Iwamura H., Anraku Y. Identification of a novel quinone-binding site in the cytochrome bo complex from Escherichia coli. J Biol Chem. 1994 Nov 18;269(46):28908–28912. [PubMed] [Google Scholar]
  266. Schiött T., von Wachenfeldt C., Hederstedt L. Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis. J Bacteriol. 1997 Mar;179(6):1962–1973. doi: 10.1128/jb.179.6.1962-1973.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Schlüter A., Rüberg S., Krämer M., Weidner S., Priefer U. B. A homolog of the Rhizobium meliloti nitrogen fixation gene fixN is involved in the production of a microaerobically induced oxidase activity in the phytopathogenic bacterium Agrobacterium tumefaciens. Mol Gen Genet. 1995 Apr 20;247(2):206–215. doi: 10.1007/BF00705651. [DOI] [PubMed] [Google Scholar]
  268. Schulze M., Rödel G. Accumulation of the cytochrome c oxidase subunits I and II in yeast requires a mitochondrial membrane-associated protein, encoded by the nuclear SCO1 gene. Mol Gen Genet. 1989 Mar;216(1):37–43. doi: 10.1007/BF00332228. [DOI] [PubMed] [Google Scholar]
  269. Schulze M., Rödel G. SCO1, a yeast nuclear gene essential for accumulation of mitochondrial cytochrome c oxidase subunit II. Mol Gen Genet. 1988 Mar;211(3):492–498. doi: 10.1007/BF00425706. [DOI] [PubMed] [Google Scholar]
  270. Shapleigh J. P., Gennis R. B. Cloning, sequencing and deletion from the chromosome of the gene encoding subunit I of the aa3-type cytochrome c oxidase of Rhodobacter sphaeroides. Mol Microbiol. 1992 Mar;6(5):635–642. doi: 10.1111/j.1365-2958.1992.tb01511.x. [DOI] [PubMed] [Google Scholar]
  271. Shapleigh J. P., Hosler J. P., Tecklenburg M. M., Kim Y., Babcock G. T., Gennis R. B., Ferguson-Miller S. Definition of the catalytic site of cytochrome c oxidase: specific ligands of heme a and the heme a3-CuB center. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4786–4790. doi: 10.1073/pnas.89.11.4786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Shevchik V. E., Condemine G., Robert-Baudouy J. Characterization of DsbC, a periplasmic protein of Erwinia chrysanthemi and Escherichia coli with disulfide isomerase activity. EMBO J. 1994 Apr 15;13(8):2007–2012. doi: 10.1002/j.1460-2075.1994.tb06470.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Siddiqui R. A., Warnecke-Eberz U., Hengsberger A., Schneider B., Kostka S., Friedrich B. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol. 1993 Sep;175(18):5867–5876. doi: 10.1128/jb.175.18.5867-5876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Smith G. B., Tiedje J. M. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol. 1992 Jan;58(1):376–384. doi: 10.1128/aem.58.1.376-384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Sodergren E. J., DeMoss J. A. narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes. J Bacteriol. 1988 Apr;170(4):1721–1729. doi: 10.1128/jb.170.4.1721-1729.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Sone M., Akiyama Y., Ito K. Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds. J Biol Chem. 1997 Apr 18;272(16):10349–10352. doi: 10.1074/jbc.272.16.10349. [DOI] [PubMed] [Google Scholar]
  277. Sone N., Sekimachi M., Kutoh E. Identification and properties of a quinol oxidase super-complex composed of a bc1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J Biol Chem. 1987 Nov 15;262(32):15386–15391. [PubMed] [Google Scholar]
  278. Sone N., Tsuchiya N., Inoue M., Noguchi S. Bacillus stearothermophilus qcr operon encoding rieske FeS protein, cytochrome b6, and a novel-type cytochrome c1 of quinol-cytochrome c reductase. J Biol Chem. 1996 May 24;271(21):12457–12462. doi: 10.1074/jbc.271.21.12457. [DOI] [PubMed] [Google Scholar]
  279. Steiner H., Kispal G., Zollner A., Haid A., Neupert W., Lill R. Heme binding to a conserved Cys-Pro-Val motif is crucial for the catalytic function of mitochondrial heme lyases. J Biol Chem. 1996 Dec 20;271(51):32605–32611. doi: 10.1074/jbc.271.51.32605. [DOI] [PubMed] [Google Scholar]
  280. Steinrücke P., Gerhus E., Ludwig B. Paracoccus denitrificans mutants deleted in the gene for subunit II of cytochrome c oxidase also lack subunit I. J Biol Chem. 1991 Apr 25;266(12):7676–7681. [PubMed] [Google Scholar]
  281. Steinrücke P., Steffens G. C., Panskus G., Buse G., Ludwig B. Subunit II of cytochrome c oxidase from Paracoccus denitrificans. DNA sequence, gene expression and the protein. Eur J Biochem. 1987 Sep 15;167(3):431–439. doi: 10.1111/j.1432-1033.1987.tb13356.x. [DOI] [PubMed] [Google Scholar]
  282. Stiefel E. I., Watt G. D. Azotobacter cytochrome b557.5 is a bacterioferritin. Nature. 1979 May 3;279(5708):81–83. doi: 10.1038/279081a0. [DOI] [PubMed] [Google Scholar]
  283. Stojiljkovic I., Hantke K. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in gram-negative bacteria. EMBO J. 1992 Dec;11(12):4359–4367. doi: 10.1002/j.1460-2075.1992.tb05535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Stojiljkovic I., Hantke K. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol Microbiol. 1994 Aug;13(4):719–732. doi: 10.1111/j.1365-2958.1994.tb00465.x. [DOI] [PubMed] [Google Scholar]
  285. Stojiljkovic I., Hwa V., de Saint Martin L., O'Gaora P., Nassif X., Heffron F., So M. The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol Microbiol. 1995 Feb;15(3):531–541. doi: 10.1111/j.1365-2958.1995.tb02266.x. [DOI] [PubMed] [Google Scholar]
  286. Stojiljkovic I., Larson J., Hwa V., Anic S., So M. HmbR outer membrane receptors of pathogenic Neisseria spp.: iron-regulated, hemoglobin-binding proteins with a high level of primary structure conservation. J Bacteriol. 1996 Aug;178(15):4670–4678. doi: 10.1128/jb.178.15.4670-4678.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Stoller G., Rücknagel K. P., Nierhaus K. H., Schmid F. X., Fischer G., Rahfeld J. U. A ribosome-associated peptidyl-prolyl cis/trans isomerase identified as the trigger factor. EMBO J. 1995 Oct 16;14(20):4939–4948. doi: 10.1002/j.1460-2075.1995.tb00177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  288. Sturr M. G., Krulwich T. A., Hicks D. B. Purification of a cytochrome bd terminal oxidase encoded by the Escherichia coli app locus from a delta cyo delta cyd strain complemented by genes from Bacillus firmus OF4. J Bacteriol. 1996 Mar;178(6):1742–1749. doi: 10.1128/jb.178.6.1742-1749.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Sun G., Sharkova E., Chesnut R., Birkey S., Duggan M. F., Sorokin A., Pujic P., Ehrlich S. D., Hulett F. M. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J Bacteriol. 1996 Mar;178(5):1374–1385. doi: 10.1128/jb.178.5.1374-1385.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Svensson B., Andersson K. K., Hederstedt L. Low-spin heme A in the heme A biosynthetic protein CtaA from Bacillus subtilis. Eur J Biochem. 1996 May 15;238(1):287–295. doi: 10.1111/j.1432-1033.1996.0287q.x. [DOI] [PubMed] [Google Scholar]
  291. Svensson B., Hederstedt L. Bacillus subtilis CtaA is a heme-containing membrane protein involved in heme A biosynthesis. J Bacteriol. 1994 Nov;176(21):6663–6671. doi: 10.1128/jb.176.21.6663-6671.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Svensson B., Lübben M., Hederstedt L. Bacillus subtilis CtaA and CtaB function in haem A biosynthesis. Mol Microbiol. 1993 Oct;10(1):193–201. doi: 10.1111/j.1365-2958.1993.tb00915.x. [DOI] [PubMed] [Google Scholar]
  293. Tamegai H., Fukumori Y. Purification, and some molecular and enzymatic features of a novel ccb-type cytochrome c oxidase from a microaerobic denitrifier, Magnetospirillum magnetotacticum. FEBS Lett. 1994 Jun 20;347(1):22–26. doi: 10.1016/0014-5793(94)00500-1. [DOI] [PubMed] [Google Scholar]
  294. Thomas J. W., Calhoun M. W., Lemieux L. J., Puustinen A., Wikström M., Alben J. O., Gennis R. B. Site-directed mutagenesis of residues within helix VI in subunit I of the cytochrome bo3 ubiquinol oxidase from Escherichia coli suggests that tyrosine 288 may be a CuB ligand. Biochemistry. 1994 Nov 8;33(44):13013–13021. doi: 10.1021/bi00248a010. [DOI] [PubMed] [Google Scholar]
  295. Throne-Holst M., Thöny-Meyer L., Hederstedt L. Escherichia coli ccm in-frame deletion mutants can produce periplasmic cytochrome b but not cytochrome c. FEBS Lett. 1997 Jun 30;410(2-3):351–355. doi: 10.1016/s0014-5793(97)00656-x. [DOI] [PubMed] [Google Scholar]
  296. Thöny-Meyer L., Beck C., Preisig O., Hennecke H. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Mol Microbiol. 1994 Nov;14(4):705–716. doi: 10.1111/j.1365-2958.1994.tb01308.x. [DOI] [PubMed] [Google Scholar]
  297. Thöny-Meyer L., Böck A., Hennecke H. Prokaryotic polyprotein precursors. FEBS Lett. 1992 Jul 27;307(1):62–65. doi: 10.1016/0014-5793(92)80902-s. [DOI] [PubMed] [Google Scholar]
  298. Thöny-Meyer L., Fischer F., Künzler P., Ritz D., Hennecke H. Escherichia coli genes required for cytochrome c maturation. J Bacteriol. 1995 Aug;177(15):4321–4326. doi: 10.1128/jb.177.15.4321-4326.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Thöny-Meyer L., James P., Hennecke H. From one gene to two proteins: the biogenesis of cytochromes b and c1 in Bradyrhizobium japonicum. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5001–5005. doi: 10.1073/pnas.88.11.5001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  300. Thöny-Meyer L., Künzler P., Hennecke H. Requirements for maturation of Bradyrhizobium japonicum cytochrome c550 in Escherichia coli. Eur J Biochem. 1996 Feb 1;235(3):754–761. doi: 10.1111/j.1432-1033.1996.00754.x. [DOI] [PubMed] [Google Scholar]
  301. Thöny-Meyer L., Künzler P. Translocation to the periplasm and signal sequence cleavage of preapocytochrome c depend on sec and lep, but not on the ccm gene products. Eur J Biochem. 1997 Jun 15;246(3):794–799. doi: 10.1111/j.1432-1033.1997.t01-1-00794.x. [DOI] [PubMed] [Google Scholar]
  302. Thöny-Meyer L., Loferer H., Ritz D., Hennecke H. Bacterial genes and proteins involved in the biogenesis of c-type cytochromes and terminal oxidases. Biochim Biophys Acta. 1994 Aug 30;1187(2):260–263. doi: 10.1016/0005-2728(94)90123-6. [DOI] [PubMed] [Google Scholar]
  303. Thöny-Meyer L., Ritz D., Hennecke H. Cytochrome c biogenesis in bacteria: a possible pathway begins to emerge. Mol Microbiol. 1994 Apr;12(1):1–9. doi: 10.1111/j.1365-2958.1994.tb00988.x. [DOI] [PubMed] [Google Scholar]
  304. Thöny-Meyer L., Stax D., Hennecke H. An unusual gene cluster for the cytochrome bc1 complex in Bradyrhizobium japonicum and its requirement for effective root nodule symbiosis. Cell. 1989 May 19;57(4):683–697. doi: 10.1016/0092-8674(89)90137-2. [DOI] [PubMed] [Google Scholar]
  305. Trandinh C. C., Pao G. M., Saier M. H., Jr Structural and evolutionary relationships among the immunophilins: two ubiquitous families of peptidyl-prolyl cis-trans isomerases. FASEB J. 1992 Dec;6(15):3410–3420. doi: 10.1096/fasebj.6.15.1464374. [DOI] [PubMed] [Google Scholar]
  306. Trumpower B. L. Cytochrome bc1 complexes of microorganisms. Microbiol Rev. 1990 Jun;54(2):101–129. doi: 10.1128/mr.54.2.101-129.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Trumpower B. L., Gennis R. B. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu Rev Biochem. 1994;63:675–716. doi: 10.1146/annurev.bi.63.070194.003331. [DOI] [PubMed] [Google Scholar]
  308. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
  309. Turba A., Jetzek M., Ludwig B. Purification of Paracoccus denitrificans cytochrome c552 and sequence analysis of the gene. Eur J Biochem. 1995 Jul 1;231(1):259–265. [PubMed] [Google Scholar]
  310. Tzagoloff A., Capitanio N., Nobrega M. P., Gatti D. Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the P. denitrificans protein encoded by ORF3. EMBO J. 1990 Sep;9(9):2759–2764. doi: 10.1002/j.1460-2075.1990.tb07463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  311. Tzagoloff A., Nobrega M., Gorman N., Sinclair P. On the functions of the yeast COX10 and COX11 gene products. Biochem Mol Biol Int. 1993 Nov;31(3):593–598. [PubMed] [Google Scholar]
  312. Ujiiye T., Yamamoto I., Nakama H., Okubo A., Yamazaki S., Satoh T. Nucleotide sequence of the genes, encoding the pentaheme cytochrome (dmsC) and the transmembrane protein (dmsB), involved in dimethyl sulfoxide respiration from Rhodobacter sphaeroides f. sp. denitrificans. Biochim Biophys Acta. 1996 Nov 12;1277(1-2):1–5. doi: 10.1016/s0005-2728(96)00101-6. [DOI] [PubMed] [Google Scholar]
  313. Unden G., Hackenberg H., Kröger A. Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. Biochim Biophys Acta. 1980 Jul 8;591(2):275–288. doi: 10.1016/0005-2728(80)90159-0. [DOI] [PubMed] [Google Scholar]
  314. Uno T., Mogi T., Tsubaki M., Nishimura Y., Anraku Y. Resonance Raman and Fourier transform infrared studies on the subunit I histidine mutants of the cytochrome bo complex in Escherichia coli. Molecular structure of redox metal centers. J Biol Chem. 1994 Apr 22;269(16):11912–11920. [PubMed] [Google Scholar]
  315. Van Doren S. R., Yun C. H., Crofts A. R., Gennis R. B. Assembly of the Rieske iron-sulfur subunit of the cytochrome bc1 complex in the Escherichia coli and Rhodobacter sphaeroides membranes independent of the cytochrome b and c1 subunits. Biochemistry. 1993 Jan 19;32(2):628–636. doi: 10.1021/bi00053a031. [DOI] [PubMed] [Google Scholar]
  316. Van den Berg J. J., Kuypers F. A., Qju J. H., Chiu D., Lubin B., Roelofsen B., Op den Kamp J. A. The use of cis-parinaric acid to determine lipid peroxidation in human erythrocyte membranes. Comparison of normal and sickle erythrocyte membranes. Biochim Biophys Acta. 1988 Sep 15;944(1):29–39. doi: 10.1016/0005-2736(88)90313-6. [DOI] [PubMed] [Google Scholar]
  317. Vargas C., Wu G., Davies A. E., Downie J. A. Identification of a gene encoding a thioredoxin-like product necessary for cytochrome c biosynthesis and symbiotic nitrogen fixation in Rhizobium leguminosarum. J Bacteriol. 1994 Jul;176(13):4117–4123. doi: 10.1128/jb.176.13.4117-4123.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Vasudevan S. G., Armarego W. L., Shaw D. C., Lilley P. E., Dixon N. E., Poole R. K. Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet. 1991 Apr;226(1-2):49–58. doi: 10.1007/BF00273586. [DOI] [PubMed] [Google Scholar]
  319. Verbist J., Lang F., Gabellini N., Oesterhelt D. Cloning and sequencing of the fbcF, B and C genes encoding the cytochrome b/c1 complex from Rhodopseudomonas viridis. Mol Gen Genet. 1989 Nov;219(3):445–452. doi: 10.1007/BF00259618. [DOI] [PubMed] [Google Scholar]
  320. Villani G., Tattoli M., Capitanio N., Glaser P., Papa S., Danchin A. Functional analysis of subunits III and IV of Bacillus subtilis aa3-600 quinol oxidase by in vitro mutagenesis and gene replacement. Biochim Biophys Acta. 1995 Nov 21;1232(1-2):67–74. doi: 10.1016/0005-2728(95)00112-5. [DOI] [PubMed] [Google Scholar]
  321. Voordouw G., Brenner S. Cloning and sequencing of the gene encoding cytochrome c3 from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem. 1986 Sep 1;159(2):347–351. doi: 10.1111/j.1432-1033.1986.tb09874.x. [DOI] [PubMed] [Google Scholar]
  322. Wakabayashi S., Matsubara H., Webster D. A. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. 1986 Jul 31-Aug 6Nature. 322(6078):481–483. doi: 10.1038/322481a0. [DOI] [PubMed] [Google Scholar]
  323. Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. Warren M. J., Scott A. I. Tetrapyrrole assembly and modification into the ligands of biologically functional cofactors. Trends Biochem Sci. 1990 Dec;15(12):486–491. doi: 10.1016/0968-0004(90)90304-t. [DOI] [PubMed] [Google Scholar]
  325. Wieseler B., Müller M. Translocation of precytochrome c2 into intracytoplasmic membrane vesicles of Rhodobacter capsulatus requires a peripheral membrane protein. Mol Microbiol. 1993 Jan;7(2):167–176. doi: 10.1111/j.1365-2958.1993.tb01108.x. [DOI] [PubMed] [Google Scholar]
  326. Wieseler B., Schiltz E., Müller M. Identification and solubilization of a signal peptidase from the phototrophic bacterium Rhodobacter capsulatus. FEBS Lett. 1992 Feb 24;298(2-3):273–276. doi: 10.1016/0014-5793(92)80075-r. [DOI] [PubMed] [Google Scholar]
  327. Witt H., Ludwig B. Isolation, analysis, and deletion of the gene coding for subunit IV of cytochrome c oxidase in Paracoccus denitrificans. J Biol Chem. 1997 Feb 28;272(9):5514–5517. doi: 10.1074/jbc.272.9.5514. [DOI] [PubMed] [Google Scholar]
  328. Wood D., Darlison M. G., Wilde R. J., Guest J. R. Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli. Biochem J. 1984 Sep 1;222(2):519–534. doi: 10.1042/bj2220519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Wu G., Delgado M. J., Vargas C., Davies A. E., Poole R. K., Downie J. A. The cytochrome bc1 complex but not CycM is necessary for symbiotic nitrogen fixation by Rhizobium leguminosarum. Microbiology. 1996 Dec;142(Pt 12):3381–3388. doi: 10.1099/13500872-142-12-3381. [DOI] [PubMed] [Google Scholar]
  330. Wunderlich M., Otto A., Seckler R., Glockshuber R. Bacterial protein disulfide isomerase: efficient catalysis of oxidative protein folding at acidic pH. Biochemistry. 1993 Nov 16;32(45):12251–12256. doi: 10.1021/bi00096a039. [DOI] [PubMed] [Google Scholar]
  331. Wülfing C., Plückthun A. Protein folding in the periplasm of Escherichia coli. Mol Microbiol. 1994 Jun;12(5):685–692. doi: 10.1111/j.1365-2958.1994.tb01056.x. [DOI] [PubMed] [Google Scholar]
  332. Yamamoto S., Hara Y., Tomochika K., Shinoda S. Utilization of hemin and hemoglobin as iron sources by Vibrio parahaemolyticus and identification of an iron-repressible hemin-binding protein. FEMS Microbiol Lett. 1995 May 1;128(2):195–200. doi: 10.1111/j.1574-6968.1995.tb07522.x. [DOI] [PubMed] [Google Scholar]
  333. Yang C. H., Azad H. R., Cooksey D. A. A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7315–7320. doi: 10.1073/pnas.93.14.7315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  334. Yariv J., Kalb A. J., Sperling R., Bauminger E. R., Cohen S. G., Ofer S. The composition and the structure of bacterioferritin of Escherichia coli. Biochem J. 1981 Jul 1;197(1):171–175. doi: 10.1042/bj1970171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  335. Ye R. W., Arunakumari A., Averill B. A., Tiedje J. M. Mutants of Pseudomonas fluorescens deficient in dissimilatory nitrite reduction are also altered in nitric oxide reduction. J Bacteriol. 1992 Apr;174(8):2560–2564. doi: 10.1128/jb.174.8.2560-2564.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  336. Yu C. A., Xia J. Z., Kachurin A. M., Yu L., Xia D., Kim H., Deisenhofer J. Crystallization and preliminary structure of beef heart mitochondrial cytochrome-bc1 complex. Biochim Biophys Acta. 1996 Jul 18;1275(1-2):47–53. doi: 10.1016/0005-2728(96)00049-7. [DOI] [PubMed] [Google Scholar]
  337. Yu J., Hederstedt L., Piggot P. J. The cytochrome bc complex (menaquinone:cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. J Bacteriol. 1995 Dec;177(23):6751–6760. doi: 10.1128/jb.177.23.6751-6760.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Yun C. H., Beci R., Crofts A. R., Kaplan S., Gennis R. B. Cloning and DNA sequencing of the fbc operon encoding the cytochrome bc1 complex from Rhodobacter sphaeroides. Characterization of fbc deletion mutants and complementation by a site-specific mutational variant. Eur J Biochem. 1990 Dec 12;194(2):399–411. doi: 10.1111/j.1432-1033.1990.tb15633.x. [DOI] [PubMed] [Google Scholar]
  339. Yun C. H., Crofts A. R., Gennis R. B. Assignment of the histidine axial ligands to the cytochrome bH and cytochrome bL components of the bc1 complex from Rhodobacter sphaeroides by site-directed mutagenesis. Biochemistry. 1991 Jul 9;30(27):6747–6754. doi: 10.1021/bi00241a017. [DOI] [PubMed] [Google Scholar]
  340. Zapun A., Bardwell J. C., Creighton T. E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry. 1993 May 18;32(19):5083–5092. doi: 10.1021/bi00070a016. [DOI] [PubMed] [Google Scholar]
  341. Zeilstra-Ryalls J. H., Kaplan S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol. 1995 Nov;177(22):6422–6431. doi: 10.1128/jb.177.22.6422-6431.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  342. Zhang L., Guarente L. Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J. 1995 Jan 16;14(2):313–320. doi: 10.1002/j.1460-2075.1995.tb07005.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Zollner A., Rödel G., Haid A. Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c1-heme lyase. Eur J Biochem. 1992 Aug 1;207(3):1093–1100. doi: 10.1111/j.1432-1033.1992.tb17146.x. [DOI] [PubMed] [Google Scholar]
  344. Zufferey R., Preisig O., Hennecke H., Thöny-Meyer L. Assembly and function of the cytochrome cbb3 oxidase subunits in Bradyrhizobium japonicum. J Biol Chem. 1996 Apr 12;271(15):9114–9119. doi: 10.1074/jbc.271.15.9114. [DOI] [PubMed] [Google Scholar]
  345. Zufferey R., Thöny-Meyer L., Hennecke H. Histidine 131, not histidine 43, of the Bradyrhizobium japonicum FixN protein is exposed towards the periplasm and essential for the function of the cbb3-type cytochrome oxidase. FEBS Lett. 1996 Oct 7;394(3):349–352. doi: 10.1016/0014-5793(96)00982-9. [DOI] [PubMed] [Google Scholar]
  346. Zumft W. G., Braun C., Cuypers H. Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem. 1994 Jan 15;219(1-2):481–490. doi: 10.1111/j.1432-1033.1994.tb19962.x. [DOI] [PubMed] [Google Scholar]
  347. Zumft W. G. The biological role of nitric oxide in bacteria. Arch Microbiol. 1993;160(4):253–264. doi: 10.1007/BF00292074. [DOI] [PubMed] [Google Scholar]
  348. de Boer A. P., Reijnders W. N., Kuenen J. G., Stouthamer A. H., van Spanning R. J. Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans. Antonie Van Leeuwenhoek. 1994;66(1-3):111–127. doi: 10.1007/BF00871635. [DOI] [PubMed] [Google Scholar]
  349. de Gier J. W., Lübben M., Reijnders W. N., Tipker C. A., Slotboom D. J., van Spanning R. J., Stouthamer A. H., van der Oost J. The terminal oxidases of Paracoccus denitrificans. Mol Microbiol. 1994 Jul;13(2):183–196. doi: 10.1111/j.1365-2958.1994.tb00414.x. [DOI] [PubMed] [Google Scholar]
  350. de Gier J. W., Schepper M., Reijnders W. N., van Dyck S. J., Slotboom D. J., Warne A., Saraste M., Krab K., Finel M., Stouthamer A. H. Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design. Mol Microbiol. 1996 Jun;20(6):1247–1260. doi: 10.1111/j.1365-2958.1996.tb02644.x. [DOI] [PubMed] [Google Scholar]
  351. van der Oost J., Lappalainen P., Musacchio A., Warne A., Lemieux L., Rumbley J., Gennis R. B., Aasa R., Pascher T., Malmström B. G. Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. EMBO J. 1992 Sep;11(9):3209–3217. doi: 10.1002/j.1460-2075.1992.tb05398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  352. van der Oost J., de Boer A. P., de Gier J. W., Zumft W. G., Stouthamer A. H., van Spanning R. J. The heme-copper oxidase family consists of three distinct types of terminal oxidases and is related to nitric oxide reductase. FEMS Microbiol Lett. 1994 Aug 1;121(1):1–9. doi: 10.1111/j.1574-6968.1994.tb07067.x. [DOI] [PubMed] [Google Scholar]
  353. van der Oost J., von Wachenfeld C., Hederstedt L., Saraste M. Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two aa3-type oxidases. Mol Microbiol. 1991 Aug;5(8):2063–2072. doi: 10.1111/j.1365-2958.1991.tb00829.x. [DOI] [PubMed] [Google Scholar]
  354. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  355. von Heijne G. Getting greasy: how transmembrane polypeptide segments integrate into the lipid bilayer. Mol Microbiol. 1997 Apr;24(2):249–253. doi: 10.1046/j.1365-2958.1997.3351702.x. [DOI] [PubMed] [Google Scholar]
  356. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol. 1992 May 20;225(2):487–494. doi: 10.1016/0022-2836(92)90934-c. [DOI] [PubMed] [Google Scholar]
  357. von Heijne G. Sec-independent protein insertion into the inner E. coli membrane. A phenomenon in search of an explanation. FEBS Lett. 1994 Jun 6;346(1):69–72. doi: 10.1016/0014-5793(94)00296-7. [DOI] [PubMed] [Google Scholar]
  358. von Ossowski I., Mulvey M. R., Leco P. A., Borys A., Loewen P. C. Nucleotide sequence of Escherichia coli katE, which encodes catalase HPII. J Bacteriol. 1991 Jan;173(2):514–520. doi: 10.1128/jb.173.2.514-520.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. von Wachenfeldt C., Hederstedt L. Bacillus subtilis 13-kilodalton cytochrome c-550 encoded by cccA consists of a membrane-anchor and a heme domain. J Biol Chem. 1990 Aug 15;265(23):13939–13948. [PubMed] [Google Scholar]
  360. von Wachenfeldt C., Hederstedt L. Bacillus subtilis holo-cytochrome c-550 can be synthesised in aerobic Escherichia coli. FEBS Lett. 1990 Sep 17;270(1-2):147–151. doi: 10.1016/0014-5793(90)81255-m. [DOI] [PubMed] [Google Scholar]

Articles from Microbiology and Molecular Biology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES