Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(13):3755–3762. doi: 10.1128/jb.178.13.3755-3762.1996

Loss of overproduction of polypeptide release factor 3 influences expression of the tryptophanase operon of Escherichia coli.

C Yanofsky 1, V Horn 1, Y Nakamura 1
PMCID: PMC232633  PMID: 8682777

Abstract

Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced inhibition of Rho-mediated transcription termination. Previous studies indicated that tryptophan induction might involve leader peptide inhibition of ribosome release at the stop codon of tnaC, the coding region for the operon-specified leader peptide. In this study we examined tna operon expression in strains in which the structural gene for protein release factor 3, prfC, is either disrupted or overexpressed. We find that prfC inactivation leads to a two- to threefold increase in basal expression of the tna operon and a slight increase in induced expression. Overexpression of prfC has the opposite effect and reduces both basal and induced expression. These effects occur in the presence of glucose and cyclic AMP, and thus Rho-dependent termination rather than catabolite repression appears to be the event influenced by the prfC alterations. prfC inactivation also leads to an increase in basal tna operon expression in various rho and rpoB mutants but not in a particular rho mutant in which the basal level of expression is very high. The effect of prfC inactivation was examined in a variety of mutants with alterations in the tna leader region. Our results suggest that translation of tnaC is essential for the prfC effect. The tryptophan residue specified by tnaC codon 12, which is essential for induction, when replaced by another amino) acid, allows the prfC effect. Introducing UAG or UAA stop codons rather than the normal tnaC UGA stop codon, in a strain with an inactive prfC gene, also leads to an increase in the basal level of expression. Addition of the drug bicyclomycin increases basal operon expression of all mutant strains except a strain with a tnaC'-'lacZ fusion. Expression in the latter strain is unaffected by prfC alterations. Our findings are consistent with the interpretation that ribosome release at the tnaC stop codon can influence tna operon expression.

Full Text

The Full Text of this article is available as a PDF (297.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamski F. M., McCaughan K. K., Jørgensen F., Kurland C. G., Tate W. P. The concentration of polypeptide chain release factors 1 and 2 at different growth rates of Escherichia coli. J Mol Biol. 1994 May 6;238(3):302–308. doi: 10.1006/jmbi.1994.1293. [DOI] [PubMed] [Google Scholar]
  2. Botsford J. L., DeMoss R. D. Catabolite repression of tryptophanase in Escherichia coli. J Bacteriol. 1971 Jan;105(1):303–312. doi: 10.1128/jb.105.1.303-312.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Botsford J. L. Metabolism of cyclic adenosine 3',5'-monophosphate and induction of tryptophanase in Escherichia coli. J Bacteriol. 1975 Oct;124(1):380–390. doi: 10.1128/jb.124.1.380-390.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown C. M., Tate W. P. Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor two. J Biol Chem. 1994 Dec 30;269(52):33164–33170. [PubMed] [Google Scholar]
  5. Burns C. M., Richardson J. P. NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4738–4742. doi: 10.1073/pnas.92.11.4738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Court D. L., Patterson T. A., Baker T., Costantino N., Mao X., Friedman D. I. Structural and functional analyses of the transcription-translation proteins NusB and NusE. J Bacteriol. 1995 May;177(9):2589–2591. doi: 10.1128/jb.177.9.2589-2591.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deeley M. C., Yanofsky C. Nucleotide sequence of the structural gene for tryptophanase of Escherichia coli K-12. J Bacteriol. 1981 Sep;147(3):787–796. doi: 10.1128/jb.147.3.787-796.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deeley M. C., Yanofsky C. Transcription initiation at the tryptophanase promoter of Escherichia coli K-12. J Bacteriol. 1982 Aug;151(2):942–951. doi: 10.1128/jb.151.2.942-951.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gish K., Yanofsky C. Evidence suggesting cis action by the TnaC leader peptide in regulating transcription attenuation in the tryptophanase operon of Escherichia coli. J Bacteriol. 1995 Dec;177(24):7245–7254. doi: 10.1128/jb.177.24.7245-7254.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gish K., Yanofsky C. Inhibition of expression of the tryptophanase operon in Escherichia coli by extrachromosomal copies of the tna leader region. J Bacteriol. 1993 Jun;175(11):3380–3387. doi: 10.1128/jb.175.11.3380-3387.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gollnick P., Yanofsky C. tRNA(Trp) translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J Bacteriol. 1990 Jun;172(6):3100–3107. doi: 10.1128/jb.172.6.3100-3107.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grentzmann G., Brechemier-Baey D., Heurgue V., Mora L., Buckingham R. H. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5848–5852. doi: 10.1073/pnas.91.13.5848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grentzmann G., Brechemier-Baey D., Heurgué-Hamard V., Buckingham R. H. Function of polypeptide chain release factor RF-3 in Escherichia coli. RF-3 action in termination is predominantly at UGA-containing stop signals. J Biol Chem. 1995 May 5;270(18):10595–10600. doi: 10.1074/jbc.270.18.10595. [DOI] [PubMed] [Google Scholar]
  14. Isaacs H., Jr, Chao D., Yanofsky C., Saier M. H., Jr Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology. 1994 Aug;140(Pt 8):2125–2134. doi: 10.1099/13500872-140-8-2125. [DOI] [PubMed] [Google Scholar]
  15. Kamath A. V., Yanofsky C. Characterization of the tryptophanase operon of Proteus vulgaris. Cloning, nucleotide sequence, amino acid homology, and in vitro synthesis of the leader peptide and regulatory analysis. J Biol Chem. 1992 Oct 5;267(28):19978–19985. [PubMed] [Google Scholar]
  16. Kawakami K., Inada T., Nakamura Y. Conditionally lethal and recessive UGA-suppressor mutations in the prfB gene encoding peptide chain release factor 2 of Escherichia coli. J Bacteriol. 1988 Nov;170(11):5378–5381. doi: 10.1128/jb.170.11.5378-5381.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawazu Y., Ito K., Matsumura K., Nakamura Y. Comparative characterization of release factor RF-3 genes of Escherichia coli, Salmonella typhimurium, and Dichelobacter nodosus. J Bacteriol. 1995 Oct;177(19):5547–5553. doi: 10.1128/jb.177.19.5547-5553.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Li J., Mason S. W., Greenblatt J. Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription. Genes Dev. 1993 Jan;7(1):161–172. doi: 10.1101/gad.7.1.161. [DOI] [PubMed] [Google Scholar]
  19. Matsumura K., Ito K., Kawazu Y., Mikuni O., Nakamura Y. Suppression of temperature-sensitive defects of polypeptide release factors RF-1 and RF-2 by mutations or by an excess of RF-3 in Escherichia coli. J Mol Biol. 1996 May 17;258(4):588–599. doi: 10.1006/jmbi.1996.0271. [DOI] [PubMed] [Google Scholar]
  20. Mikuni O., Ito K., Moffat J., Matsumura K., McCaughan K., Nobukuni T., Tate W., Nakamura Y. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5798–5802. doi: 10.1073/pnas.91.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sarsero J. P., Wookey P. J., Gollnick P., Yanofsky C., Pittard A. J. A new family of integral membrane proteins involved in transport of aromatic amino acids in Escherichia coli. J Bacteriol. 1991 May;173(10):3231–3234. doi: 10.1128/jb.173.10.3231-3234.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Stewart V., Landick R., Yanofsky C. Rho-dependent transcription termination in the tryptophanase operon leader region of Escherichia coli K-12. J Bacteriol. 1986 Apr;166(1):217–223. doi: 10.1128/jb.166.1.217-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stewart V., Yanofsky C. Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12. J Bacteriol. 1985 Nov;164(2):731–740. doi: 10.1128/jb.164.2.731-740.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stewart V., Yanofsky C. Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12. J Bacteriol. 1986 Jul;167(1):383–386. doi: 10.1128/jb.167.1.383-386.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suelter C. H., Wang J., Snell E. E. Direct spectrophotometric assay of tryptophanase. FEBS Lett. 1976 Jul 15;66(2):230–232. doi: 10.1016/0014-5793(76)80510-8. [DOI] [PubMed] [Google Scholar]
  26. Sullivan S. L., Gottesman M. E. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell. 1992 Mar 6;68(5):989–994. doi: 10.1016/0092-8674(92)90041-a. [DOI] [PubMed] [Google Scholar]
  27. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  28. Vogel U., Jensen K. F. Effects of the antiterminator BoxA on transcription elongation kinetics and ppGpp inhibition of transcription elongation in Escherichia coli. J Biol Chem. 1995 Aug 4;270(31):18335–18340. doi: 10.1074/jbc.270.31.18335. [DOI] [PubMed] [Google Scholar]
  29. Yanofsky C., Horn V. Bicyclomycin sensitivity and resistance affect Rho factor-mediated transcription termination in the tna operon of Escherichia coli. J Bacteriol. 1995 Aug;177(15):4451–4456. doi: 10.1128/jb.177.15.4451-4456.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yanofsky C., Horn V., Gollnick P. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol. 1991 Oct;173(19):6009–6017. doi: 10.1128/jb.173.19.6009-6017.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zwiefka A., Kohn H., Widger W. R. Transcription termination factor rho: the site of bicyclomycin inhibition in Escherichia coli. Biochemistry. 1993 Apr 13;32(14):3564–3570. doi: 10.1021/bi00065a007. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES