Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(13):3939–3948. doi: 10.1128/jb.178.13.3939-3948.1996

Caulobacter and Asticcacaulis stalk bands as indicators of stalk age.

J S Poindexter 1, J T Staley 1
PMCID: PMC232657  PMID: 8682801

Abstract

The prosthecae (stalks) of dimorphic caulobacters of the genera Caulobacter and Asticcacaulis are distinguished among such appendages by the presence of disk-like components known as stalk bands. Whether bands are added to a cell's stalk(s) as a regular event coordinated with the cell's reproductive cycle has not been settled by previous studies. Analysis of the frequency of stalks with i, i + 1, i + 2, etc. bands 'among more than 7,000 stalks of Caulobacter crescentus revealed that in finite (batch) cultures (in which all offspring accumulate), the proportion of stalks with i + 1 hands was regularly 50% of the proportion of stalks with i bands. This implied that the number of bands correlated with the number of reproductive cycles completed by a stalked cell. In chemostat-maintained perpetual cultures, the proportion was greater than 50% because stalked cells, with their shorter reproductive cycle times, contributed a larger proportion of offspring to the steady-state population than did their swarmer siblings. In Asticcacaulis biprosthecum cells, which bear twin prosthecae, the twins on a typical cell possessed the same number of bands. For both genera, stalk bands provide a unique morphological feature that could be employed in an assessment of age distribution and reproductive dynamics within natural populations of these caulobacters.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coulton J. W., Murray R. G. Cell envelope associations of Aquaspirillum serpens flagella. J Bacteriol. 1978 Dec;136(3):1037–1049. doi: 10.1128/jb.136.3.1037-1049.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coulton J. W., Murray R. G. Membrane-associated components of the bacterial flagellar apparatus. Biochim Biophys Acta. 1977 Mar 1;465(2):290–310. doi: 10.1016/0005-2736(77)90080-3. [DOI] [PubMed] [Google Scholar]
  3. De Bont J. A., Staley J. T., Pankratz H. S. Isolation and description of a non-motile, fusiform, stalked bacterium, a representative of a new genus. Antonie Van Leeuwenhoek. 1970;36(3):397–407. doi: 10.1007/BF02069040. [DOI] [PubMed] [Google Scholar]
  4. Degnen S. T., Newton A. Dependence of cell division on the completion of chromosome replication in Caulobacter. J Bacteriol. 1972 Jun;110(3):852–856. doi: 10.1128/jb.110.3.852-856.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Driks A., Schoenlein P. V., DeRosier D. J., Shapiro L., Ely B. A Caulobacter gene involved in polar morphogenesis. J Bacteriol. 1990 Apr;172(4):2113–2123. doi: 10.1128/jb.172.4.2113-2123.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evinger M., Agabian N. Caulobacter crescentus nucleoid: analysis of sedimentation behavior and protein composition during the cell cycle. Proc Natl Acad Sci U S A. 1979 Jan;76(1):175–178. doi: 10.1073/pnas.76.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HOUWINK A. L. Caulobacter; its morphogenesis, taxonomy and parasitism. Antonie Van Leeuwenhoek. 1955;21(1):49–64. doi: 10.1007/BF02543799. [DOI] [PubMed] [Google Scholar]
  8. Haars E. G., Schmidt J. M. Stalk formation and its inhibition in Caulobacter crescentus. J Bacteriol. 1974 Dec;120(3):1409–1416. doi: 10.1128/jb.120.3.1409-1416.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henrici A. T., Johnson D. E. Studies of Freshwater Bacteria: II. Stalked Bacteria, a New Order of Schizomycetes. J Bacteriol. 1935 Jul;30(1):61–93. doi: 10.1128/jb.30.1.61-93.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones H. C., Schmidt J. M. Ultrastructural study of crossbands occurring in the stalks of Caulobacter crescentus. J Bacteriol. 1973 Oct;116(1):466–470. doi: 10.1128/jb.116.1.466-470.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. POINDEXTER J. S. BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP. Bacteriol Rev. 1964 Sep;28:231–295. doi: 10.1128/br.28.3.231-295.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pate J. L., Ordal E. J. The fine structure of two unusual stalked bacteria. J Cell Biol. 1965 Oct;27(1):133–150. doi: 10.1083/jcb.27.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pate J. L., Porter J. S., Jordan T. L. Asticcacaulis biprosthecum sp.nov. Life cycle, morphology and cultural characteristics. Antonie Van Leeuwenhoek. 1973 Nov;39(4):569–583. doi: 10.1007/BF02578901. [DOI] [PubMed] [Google Scholar]
  14. Poindexter J. S. Selection for nonbuoyant morphological mutants of Caulobacter crescentus. J Bacteriol. 1978 Sep;135(3):1141–1145. doi: 10.1128/jb.135.3.1141-1145.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Poindexter J. S. The caulobacters: ubiquitous unusual bacteria. Microbiol Rev. 1981 Mar;45(1):123–179. doi: 10.1128/mr.45.1.123-179.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Poindexter J. S. The role of calcium in stalk development and in phosphate acquisition in Caulobacter crescentus. Arch Microbiol. 1984 Jun;138(2):140–152. doi: 10.1007/BF00413014. [DOI] [PubMed] [Google Scholar]
  17. STOVEPOINDEXTER J. L., COHEN-BAZIRE G. THE FINE STRUCTURE OF STALKED BACTERIA BELONGING TO THE FAMILY CAULOBACTERACEAE. J Cell Biol. 1964 Dec;23:587–607. doi: 10.1083/jcb.23.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schmidt J. M., Stanier R. Y. The development of cellular stalks in bacteria. J Cell Biol. 1966 Mar;28(3):423–436. doi: 10.1083/jcb.28.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schmidt J. M., Swafford J. R. Ultrastructure of crossbands in prosthecae of Asticcacaulis species. J Bacteriol. 1975 Dec;124(3):1601–1603. doi: 10.1128/jb.124.3.1601-1603.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shapiro L., Agabian-Keshishian N., Bendis I. Bacterial differentiation. Science. 1971 Sep 3;173(4000):884–892. doi: 10.1126/science.173.4000.884. [DOI] [PubMed] [Google Scholar]
  21. Shapiro L. Generation of polarity during Caulobacter cell differentiation. Annu Rev Cell Biol. 1985;1:173–207. doi: 10.1146/annurev.cb.01.110185.001133. [DOI] [PubMed] [Google Scholar]
  22. Staley J. T., Bont J. A., Jonge K. Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie Van Leeuwenhoek. 1976;42(3):333–342. doi: 10.1007/BF00394132. [DOI] [PubMed] [Google Scholar]
  23. Staley J. T., Jordan T. L. Crossbands of Caulobacter crescentus stalks serve as indicators of cell age. Nature. 1973 Nov 16;246(5429):155–156. doi: 10.1038/246155a0. [DOI] [PubMed] [Google Scholar]
  24. Staley J. T. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol. 1968 May;95(5):1921–1942. doi: 10.1128/jb.95.5.1921-1942.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES