Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1996 Jul;178(13):3953–3956. doi: 10.1128/jb.178.13.3953-3956.1996

Sulfate transport in Penicillium chrysogenum plasma membranes.

D J Hillenga 1, H J Versantvoort 1, A J Driessen 1, W N Konings 1
PMCID: PMC232659  PMID: 8682803

Abstract

Transport studies with Penicillium chrysogenum plasma membranes fused with cytochrome c oxidase liposomes demonstrate that sulfate uptake is driven by the transmembrane pH gradient and not by the transmembrane electrical potential. Ca2+ and other divalent cations are not required. It is concluded that the sulfate transport system catalyzes the symport of two protons with one sulfate anion.

Full Text

The Full Text of this article is available as a PDF (252.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradfield G., Somerfield P., Meyn T., Holby M., Babcock D., Bradley D., Segel I. H. Regulation of sulfate transport in filamentous fungi. Plant Physiol. 1970 Nov;46(5):720–727. doi: 10.1104/pp.46.5.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cuppoletti J., Segel I. H. Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium. Biochemistry. 1975 Oct 21;14(21):4712–4718. doi: 10.1021/bi00692a023. [DOI] [PubMed] [Google Scholar]
  3. Driessen A. J., Konings W. N. Insertion of lipids and proteins into bacterial membranes by fusion with liposomes. Methods Enzymol. 1993;221:394–408. doi: 10.1016/0076-6879(93)21032-4. [DOI] [PubMed] [Google Scholar]
  4. Driessen A. J., de Vrij W., Konings W. N. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7555–7559. doi: 10.1073/pnas.82.22.7555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hillenga D. J., Versantvoort H. J., Driessen A. J., Konings W. N. Structural and functional properties of plasma membranes from the filamentous fungus Penicillium chrysogenum. Eur J Biochem. 1994 Sep 1;224(2):581–587. doi: 10.1111/j.1432-1033.1994.t01-1-00581.x. [DOI] [PubMed] [Google Scholar]
  6. Hunter D. R., Segel I. H. Evidence for two distinct intracellular pools of inorganic sulfate in Penicillium notatum. J Bacteriol. 1985 Jun;162(3):881–887. doi: 10.1128/jb.162.3.881-887.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jarai G., Marzluf G. A. Sulfate transport in Neurospora crassa: regulation, turnover, and cellular localization of the CYS-14 protein. Biochemistry. 1991 May 14;30(19):4768–4773. doi: 10.1021/bi00233a019. [DOI] [PubMed] [Google Scholar]
  8. Lara F., del Carmen Mateos R., Vázquez G., Sánchez S. Induction of penicillin biosynthesis by L-glutamate in penicillium chrysogenum. Biochem Biophys Res Commun. 1982 Mar 15;105(1):172–178. doi: 10.1016/s0006-291x(82)80027-2. [DOI] [PubMed] [Google Scholar]
  9. Marzluf G. A. Genetic and biochemical studies of distinct sulfate permease species in different developmental stages of Neurospora crassa. Arch Biochem Biophys. 1970 May;138(1):254–263. doi: 10.1016/0003-9861(70)90306-1. [DOI] [PubMed] [Google Scholar]
  10. Marzluf G. A. Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol. 1993;47:31–55. doi: 10.1146/annurev.mi.47.100193.000335. [DOI] [PubMed] [Google Scholar]
  11. McCready R. G., Din G. A. Active sulfate transport in Saccharomyces cerevisiae. FEBS Lett. 1974 Jan 15;38(3):361–363. doi: 10.1016/0014-5793(74)80092-x. [DOI] [PubMed] [Google Scholar]
  12. Nüesch J., Heim J., Treichler H. J. The biosynthesis of sulfur-containing beta-lactam antibiotics. Annu Rev Microbiol. 1987;41:51–75. doi: 10.1146/annurev.mi.41.100187.000411. [DOI] [PubMed] [Google Scholar]
  13. SEGEL I. H., JOHNSON M. J. Accumulation of intracellular inorganic sulfate by Penicillium chrysogenum. J Bacteriol. 1961 Jan;81:91–98. doi: 10.1128/jb.81.1.91-98.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tweedie J. W., Segel I. H. Specificity of transport processes for sulfur, selenium, and molybdenum anions by filamentous fungi. Biochim Biophys Acta. 1970 Jan 6;196(1):95–106. doi: 10.1016/0005-2736(70)90170-7. [DOI] [PubMed] [Google Scholar]
  15. Yamamoto L. A., Segel I. H. The inorganic sulfate transport system of Penicillium chrysogenum. Arch Biochem Biophys. 1966 Jun;114(3):523–538. doi: 10.1016/0003-9861(66)90376-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES