Abstract
The muropeptide composition of bacterial peptidoglycan is currently most efficiently determined by reverse-phase high-pressure liquid chromatography (HPLC). Though sensitive, the HPLC procedure is technically demanding and has been applied to a relatively small number of bacterial strains and species. We have found that fluorescence-assisted carbohydrate electrophoresis (FACE) is a simple, rapid method by which reducing muropeptides from multiple peptidoglycan samples can be visualized. Individual reducing muropeptides were covalently labeled with the fluorescent molecule 8-aminonaphthalene-1,3,6-trisulfonic acid, after which they were separated by electrophoresis through a 35% polyacrylamide gel and visualized by exposure to UV light. FACE detected the appropriate numbers of reducing muropeptides in the proper proportions for four bacteria: Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, and Yersinia enterocolitica. As little as 2 to 5 pmol per muropeptide was detected when the intensity of the fluorescent signal was measured with a charge-coupled device camera, at a level of sensitivity between 50 and 250 times higher than that of the classic HPLC technique. Thus, FACE may be used to identify interesting peptidoglycan samples prior to more-extensive analysis by HPLC, or FACE may eventually replace HPLC for some applications.
Full Text
The Full Text of this article is available as a PDF (372.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burroughs M. H., Chang Y. S., Gage D. A., Tuomanen E. I. Composition of the peptidoglycan of Haemophilus influenzae. J Biol Chem. 1993 Jun 5;268(16):11594–11598. [PubMed] [Google Scholar]
- Dougherty T. J. Analysis of Neisseria gonorrhoeae peptidoglycan by reverse-phase, high-pressure liquid chromatography. J Bacteriol. 1985 Jul;163(1):69–74. doi: 10.1128/jb.163.1.69-74.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Bustos J. F., Chait B. T., Tomasz A. Structure of the peptide network of pneumococcal peptidoglycan. J Biol Chem. 1987 Nov 15;262(32):15400–15405. [PubMed] [Google Scholar]
- Glauner B., Höltje J. V., Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem. 1988 Jul 25;263(21):10088–10095. [PubMed] [Google Scholar]
- Glauner B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem. 1988 Aug 1;172(2):451–464. doi: 10.1016/0003-2697(88)90468-x. [DOI] [PubMed] [Google Scholar]
- Harz H., Burgdorf K., Höltje J. V. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem. 1990 Oct;190(1):120–128. doi: 10.1016/0003-2697(90)90144-x. [DOI] [PubMed] [Google Scholar]
- Hayashi K. A rapid determination of sodium dodecyl sulfate with methylene blue. Anal Biochem. 1975 Aug;67(2):503–506. doi: 10.1016/0003-2697(75)90324-3. [DOI] [PubMed] [Google Scholar]
- Hu G. F., Vallee B. L. A gel retardation assay for the interaction of proteins and carbohydrates by fluorophore-assisted carbohydrate electrophoresis. Anal Biochem. 1994 Apr;218(1):185–191. doi: 10.1006/abio.1994.1158. [DOI] [PubMed] [Google Scholar]
- Höltje J. V., Mirelman D., Sharon N., Schwarz U. Novel type of murein transglycosylase in Escherichia coli. J Bacteriol. 1975 Dec;124(3):1067–1076. doi: 10.1128/jb.124.3.1067-1076.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson P. The analysis of fluorophore-labeled glycans by high-resolution polyacrylamide gel electrophoresis. Anal Biochem. 1994 Feb 1;216(2):243–252. doi: 10.1006/abio.1994.1038. [DOI] [PubMed] [Google Scholar]
- Jackson P. The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem J. 1990 Sep 15;270(3):705–713. doi: 10.1042/bj2700705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraus W., Höltje J. V. Two distinct transpeptidation reactions during murein synthesis in Escherichia coli. J Bacteriol. 1987 Jul;169(7):3099–3103. doi: 10.1128/jb.169.7.3099-3103.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Olijhoek A. J., Klencke S., Pas E., Nanninga N., Schwarz U. Volume growth, murein synthesis, and murein cross-linkage during the division cycle of Escherichia coli PA3092. J Bacteriol. 1982 Dec;152(3):1248–1254. doi: 10.1128/jb.152.3.1248-1254.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ottolenghi A. C., Caparrós M., de Pedro M. A. Peptidoglycan tripeptide content and cross-linking are altered in Enterobacter cloacae induced to produce AmpC beta-lactamase by glycine and D-amino acids. J Bacteriol. 1993 Mar;175(5):1537–1542. doi: 10.1128/jb.175.5.1537-1542.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PRIMOSIGH J., PELZER H., MAASS D., WEIDEL W. Chemical characterization of mucopeptides released from the E. coli B cell wall by enzymic action. Biochim Biophys Acta. 1961 Jan 1;46:68–80. doi: 10.1016/0006-3002(61)90647-3. [DOI] [PubMed] [Google Scholar]
- Pittenauer E., Schmid E. R., Allmaier G., Pfanzagl B., Löffelhardt W., Fernández C. Q., de Pedro M. A., Stanek W. Structural characterization of the cyanelle peptidoglycan of Cyanophora paradoxa by 252Cf plasma desorption mass spectrometry and fast atom bombardment/tandem mass spectrometry. Biol Mass Spectrom. 1993 Sep;22(9):524–536. doi: 10.1002/bms.1200220906. [DOI] [PubMed] [Google Scholar]
- Quintela J. C., Caparrós M., de Pedro M. A. Variability of peptidoglycan structural parameters in gram-negative bacteria. FEMS Microbiol Lett. 1995 Jan 1;125(1):95–100. doi: 10.1111/j.1574-6968.1995.tb07341.x. [DOI] [PubMed] [Google Scholar]
- Quintela J. C., Pittenauer E., Allmaier G., Arán V., de Pedro M. A. Structure of peptidoglycan from Thermus thermophilus HB8. J Bacteriol. 1995 Sep;177(17):4947–4962. doi: 10.1128/jb.177.17.4947-4962.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha R. K., Neuhaus F. C. Biosynthesis of peptidoglycan in Gaffkya homari: on the target(s) of benzylpenicillin. Antimicrob Agents Chemother. 1991 Sep;35(9):1753–1759. doi: 10.1128/aac.35.9.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stack R. J., Sullivan M. T. Electrophoretic resolution and fluorescence detection of N-linked glycoprotein oligosaccharides after reductive amination with 8-aminonaphthalene-1,3,6-trisulphonic acid. Glycobiology. 1992 Feb;2(1):85–92. doi: 10.1093/glycob/2.1.85. [DOI] [PubMed] [Google Scholar]
- Tuomanen E., Schwartz J., Sande S., Light K., Gage D. Unusual composition of peptidoglycan in Bordetella pertussis. J Biol Chem. 1989 Jul 5;264(19):11093–11098. [PubMed] [Google Scholar]
- de Jonge B. L., Chang Y. S., Gage D., Tomasz A. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. J Biol Chem. 1992 Jun 5;267(16):11248–11254. [PubMed] [Google Scholar]