Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 May;35(5):1179–1183. doi: 10.1128/jcm.35.5.1179-1183.1997

Species identification of Chlamydia isolates by analyzing restriction fragment length polymorphism of the 16S-23S rRNA spacer region.

A Meijer 1, G J Kwakkel 1, A de Vries 1, L M Schouls 1, J M Ossewaarde 1
PMCID: PMC232725  PMID: 9114403

Abstract

The genetic diversity of the 16S-23S rRNA spacer region of 12 Chlamydia pneumoniae isolates, 7 Chlamydia trachomatis isolates (human biovars: the trachoma serovars B and C, the urogenital serovars D, E, and F, and the lymphogranuloma venereum serovar L2; and a mouse biovar), 6 Chlamydia psittaci isolates (5 avian isolates and 1 feline isolate), and one Chlamydia pecorum isolate was studied. The 16S-23S rRNA spacer region was amplified by PCR and digested with the restriction enzymes MseI, PstI, AluI, BglII, NlaIV, and BclI. All 26 isolates could be amplified by using one genus-specific primer pair, yielding an amplicon with a size of 803 bp. The analytical sensitivity of the PCR assay was < or = 100 inclusion-forming units per reaction. Digestion with MseI or AluI made it possible to differentiate the four species from each other, the C. trachomatis human biovars from the mouse biovar, and the C. psittaci avian isolates from the feline isolate. The MseI profiles were more distinct than the AluI profiles. Phylogenetic analysis of the results for all enzymes combined supported the current classification of four Chlamydia species: C. pneumoniae, C. trachomatis, C. psittaci, and C. pecorum. Phylogenetic analysis also suggested subdivision of isolates of C. trachomatis and C. psittaci into subgroups that coincide with their host range. In conclusion, we have developed an easy and rapid method for species and subspecies identification of Chlamydia based on restriction fragment length polymorphism analysis of the 16S-23S rRNA spacer region.

Full Text

The Full Text of this article is available as a PDF (184.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes R. C. Laboratory diagnosis of human chlamydial infections. Clin Microbiol Rev. 1989 Apr;2(2):119–136. doi: 10.1128/cmr.2.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergmans A. M., Schellekens J. F., van Embden J. D., Schouls L. M. Predominance of two Bartonella henselae variants among cat-scratch disease patients in the Netherlands. J Clin Microbiol. 1996 Feb;34(2):254–260. doi: 10.1128/jcm.34.2.254-260.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell L. A., Kuo C. C., Grayston J. T. Characterization of the new Chlamydia agent, TWAR, as a unique organism by restriction endonuclease analysis and DNA-DNA hybridization. J Clin Microbiol. 1987 Oct;25(10):1911–1916. doi: 10.1128/jcm.25.10.1911-1916.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fukushi H., Hirai K. Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin. J Bacteriol. 1989 May;171(5):2850–2855. doi: 10.1128/jb.171.5.2850-2855.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukushi H., Hirai K. Proposal of Chlamydia pecorum sp. nov. for Chlamydia strains derived from ruminants. Int J Syst Bacteriol. 1992 Apr;42(2):306–308. doi: 10.1099/00207713-42-2-306. [DOI] [PubMed] [Google Scholar]
  6. Fukushi H., Hirai K. Restriction fragment length polymorphisms of rRNA as genetic markers to differentiate Chlamydia spp. Int J Syst Bacteriol. 1993 Jul;43(3):613–617. doi: 10.1099/00207713-43-3-613. [DOI] [PubMed] [Google Scholar]
  7. Gaydos C. A., Palmer L., Quinn T. C., Falkow S., Eiden J. J. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Int J Syst Bacteriol. 1993 Jul;43(3):610–612. doi: 10.1099/00207713-43-3-610. [DOI] [PubMed] [Google Scholar]
  8. Gaydos C. A., Quinn T. C., Bobo L. D., Eiden J. J. Similarity of Chlamydia pneumoniae strains in the variable domain IV region of the major outer membrane protein gene. Infect Immun. 1992 Dec;60(12):5319–5323. doi: 10.1128/iai.60.12.5319-5323.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greisen K., Loeffelholz M., Purohit A., Leong D. PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol. 1994 Feb;32(2):335–351. doi: 10.1128/jcm.32.2.335-351.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gürtler V., Stanisich V. A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology. 1996 Jan;142(Pt 1):3–16. doi: 10.1099/13500872-142-1-3. [DOI] [PubMed] [Google Scholar]
  11. Hansen H., Lemke H., Bodner U. Rapid and simple purification of PCR products by direct band elution during agarose gel electrophoresis. Biotechniques. 1993 Jan;14(1):28–30. [PubMed] [Google Scholar]
  12. Herring A. J. Typing Chlamydia psittaci--a review of methods and recent findings. Br Vet J. 1993 Sep-Oct;149(5):455–475. doi: 10.1016/S0007-1935(05)80111-3. [DOI] [PubMed] [Google Scholar]
  13. Herrmann B., Winqvist O., Mattsson J. G., Kirsebom L. A. Differentiation of Chlamydia spp. by sequence determination and restriction endonuclease cleavage of RNase P RNA genes. J Clin Microbiol. 1996 Aug;34(8):1897–1902. doi: 10.1128/jcm.34.8.1897-1902.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holland S. M., Gaydos C. A., Quinn T. C. Detection and differentiation of Chlamydia trachomatis, Chlamydia psittaci, and Chlamydia pneumoniae by DNA amplification. J Infect Dis. 1990 Oct;162(4):984–987. doi: 10.1093/infdis/162.4.984. [DOI] [PubMed] [Google Scholar]
  15. Kuo C. C., Jackson L. A., Campbell L. A., Grayston J. T. Chlamydia pneumoniae (TWAR). Clin Microbiol Rev. 1995 Oct;8(4):451–461. doi: 10.1128/cmr.8.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller J. C. RESTSITE: a phylogenetic program that sorts raw restriction data. J Hered. 1991 May-Jun;82(3):262–263. doi: 10.1093/oxfordjournals.jhered.a111081. [DOI] [PubMed] [Google Scholar]
  17. Ossewaarde J. M., Rieffe M., Rozenberg-Arska M., Ossenkoppele P. M., Nawrocki R. P., van Loon A. M. Development and clinical evaluation of a polymerase chain reaction test for detection of Chlamydia trachomatis. J Clin Microbiol. 1992 Aug;30(8):2122–2128. doi: 10.1128/jcm.30.8.2122-2128.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  19. Wagels G., Rasmussen S., Timms P. Comparison of Chlamydia pneumoniae isolates by western blot (immunoblot) analysis and DNA sequencing of the omp 2 gene. J Clin Microbiol. 1994 Nov;32(11):2820–2823. doi: 10.1128/jcm.32.11.2820-2823.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weiss E., Schramek S., Wilson N. N., Newman L. W. Deoxyribonucleic Acid Heterogeneity Between Human and Murine Strains of Chlamydia trachomatis. Infect Immun. 1970 Jul;2(1):24–28. doi: 10.1128/iai.2.1.24-28.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Widjojoatmodjo M. N., Fluit A. C., Verhoef J. Rapid identification of bacteria by PCR-single-strand conformation polymorphism. J Clin Microbiol. 1994 Dec;32(12):3002–3007. doi: 10.1128/jcm.32.12.3002-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES