Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1997 May;35(5):1209–1215. doi: 10.1128/jcm.35.5.1209-1215.1997

Use of monoclonal antibodies to facilitate identification, cloning, and purification of Chlamydia trachomatis hsp10.

D LaVerda 1, G I Byrne 1
PMCID: PMC232731  PMID: 9114409

Abstract

As a requisite for a physiological and immunological investigation, reagents were developed that facilitated the identification and purification of Chlamydia trachomatis hsp10 (chsp10). Monoclonal antibodies that specifically recognize chsp10 were generated with multiple-antigen peptides (MAPs) to promote recognition of Chlamydia-specific epitopes. MAP2, containing amino acids 54 to 69 of the hsp10 sequence, elicited strong antibody responses after immunization of BALB/c mice. Monoclonal antibodies from several cloned hybridomas reacted on immunoblots with an approximately 15-kDa chlamydial protein and recombinant chsp10. Because of its strict specificity for chsp10, monoclonal antibody M1.2 was selected for routine use. M1.2 reacted by immunoblot with the hsp10s of several C. trachomatis strains but not with Chlamydia psittaci hsp10 or Escherichia coli homolog GroES, suggesting that M1.2 recognizes a species-specific epitope. Recombinant chsp10 was purified by immunoaffinity chromatography with M1.2. For large-scale purification, chsp10 was appended with a C-terminal six-histidine tag for purification by nickel chelate affinity chromatography. The hypA gene encoding the chsp10 of C. trachomatis serovar E/Bour was cloned into the pQE-60 vector (QIAGEN, Inc.) following PCR amplification from genomic DNA. E. coli DH5 transformants were screened for chsp10 expression by colony immunoblotting with M1.2, were tested for nickel matrix binding, and were sequenced. The sequence of serovar E/Bour chsp10 was found to be closely homologous to those of hsp10s of other chlamydiae. Purified chsp10 and specific anti-chsp10 monoclonal antibodies will be useful for investigating the biological and immunological roles of hsp10 in chlamydial infections.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Arno J. N., Yuan Y., Cleary R. E., Morrison R. P. Serologic responses of infertile women to the 60-kd chlamydial heat shock protein (hsp60). Fertil Steril. 1995 Oct;64(4):730–735. doi: 10.1016/s0015-0282(16)57847-9. [DOI] [PubMed] [Google Scholar]
  3. Barnes P. F., Mehra V., Rivoire B., Fong S. J., Brennan P. J., Voegtline M. S., Minden P., Houghten R. A., Bloom B. R., Modlin R. L. Immunoreactivity of a 10-kDa antigen of Mycobacterium tuberculosis. J Immunol. 1992 Mar 15;148(6):1835–1840. [PubMed] [Google Scholar]
  4. Bavoil P., Stephens R. S., Falkow S. A soluble 60 kiloDalton antigen of Chlamydia spp. is a homologue of Escherichia coli GroEL. Mol Microbiol. 1990 Mar;4(3):461–469. doi: 10.1111/j.1365-2958.1990.tb00612.x. [DOI] [PubMed] [Google Scholar]
  5. Beatty P. R., Stephens R. S. Identification of Chlamydia trachomatis antigens by use of murine T-cell lines. Infect Immun. 1992 Nov;60(11):4598–4603. doi: 10.1128/iai.60.11.4598-4603.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beatty W. L., Belanger T. A., Desai A. A., Morrison R. P., Byrne G. I. Role of tryptophan in gamma interferon-mediated chlamydial persistence. Ann N Y Acad Sci. 1994 Aug 15;730:304–306. doi: 10.1111/j.1749-6632.1994.tb44274.x. [DOI] [PubMed] [Google Scholar]
  7. Beatty W. L., Belanger T. A., Desai A. A., Morrison R. P., Byrne G. I. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect Immun. 1994 Sep;62(9):3705–3711. doi: 10.1128/iai.62.9.3705-3711.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Beatty W. L., Byrne G. I., Morrison R. P. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3998–4002. doi: 10.1073/pnas.90.9.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Beatty W. L., Byrne G. I., Morrison R. P. Repeated and persistent infection with Chlamydia and the development of chronic inflammation and disease. Trends Microbiol. 1994 Mar;2(3):94–98. doi: 10.1016/0966-842x(94)90542-8. [DOI] [PubMed] [Google Scholar]
  10. Beatty W. L., Morrison R. P., Byrne G. I. Immunoelectron-microscopic quantitation of differential levels of chlamydial proteins in a cell culture model of persistent Chlamydia trachomatis infection. Infect Immun. 1994 Sep;62(9):4059–4062. doi: 10.1128/iai.62.9.4059-4062.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brunham R. C., Peeling R., Maclean I., Kosseim M. L., Paraskevas M. Chlamydia trachomatis-associated ectopic pregnancy: serologic and histologic correlates. J Infect Dis. 1992 Jun;165(6):1076–1081. doi: 10.1093/infdis/165.6.1076. [DOI] [PubMed] [Google Scholar]
  12. Brunham R. C., Peeling R., Maclean I., McDowell J., Persson K., Osser S. Postabortal Chlamydia trachomatis salpingitis: correlating risk with antigen-specific serological responses and with neutralization. J Infect Dis. 1987 Apr;155(4):749–755. doi: 10.1093/infdis/155.4.749. [DOI] [PubMed] [Google Scholar]
  13. Cerrone M. C., Ma J. J., Stephens R. S. Cloning and sequence of the gene for heat shock protein 60 from Chlamydia trachomatis and immunological reactivity of the protein. Infect Immun. 1991 Jan;59(1):79–90. doi: 10.1128/iai.59.1.79-90.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chai S. K., Clavijo P., Tam J. P., Zavala F. Immunogenic properties of multiple antigen peptide systems containing defined T and B epitopes. J Immunol. 1992 Oct 1;149(7):2385–2390. [PubMed] [Google Scholar]
  15. Christodoulides M., Heckels J. E. Immunization with a multiple antigen peptide containing defined B- and T-cell epitopes: production of bactericidal antibodies against group B Neisseria meningitidis. Microbiology. 1994 Nov;140(Pt 11):2951–2960. doi: 10.1099/13500872-140-11-2951. [DOI] [PubMed] [Google Scholar]
  16. Coles A. M., Crosby H. A., Pearce J. H. Analysis of the human serological response to Chlamydia trachomatis 60-kDa proteins by two-dimensional electrophoresis and immunoblotting. FEMS Microbiol Lett. 1991 Jul 1;65(3):299–303. doi: 10.1016/0378-1097(91)90231-x. [DOI] [PubMed] [Google Scholar]
  17. Coles A. M., Reynolds D. J., Harper A., Devitt A., Pearce J. H. Low-nutrient induction of abnormal chlamydial development: a novel component of chlamydial pathogenesis? FEMS Microbiol Lett. 1993 Jan 15;106(2):193–200. doi: 10.1111/j.1574-6968.1993.tb05958.x. [DOI] [PubMed] [Google Scholar]
  18. Craig E. A., Gambill B. D., Nelson R. J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev. 1993 Jun;57(2):402–414. doi: 10.1128/mr.57.2.402-414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Deshpande R. G., Khan M. B., Navalkar R. G. Immunological evaluation of a 12-kilodalton protein of Mycobacterium tuberculosis by enzyme-linked immunosorbent assay. Tuber Lung Dis. 1993 Dec;74(6):382–387. doi: 10.1016/0962-8479(93)90081-8. [DOI] [PubMed] [Google Scholar]
  20. Engel J. N., Pollack J., Perara E., Ganem D. Heat shock response of murine Chlamydia trachomatis. J Bacteriol. 1990 Dec;172(12):6959–6972. doi: 10.1128/jb.172.12.6959-6972.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ferrero R. L., Thiberge J. M., Kansau I., Wuscher N., Huerre M., Labigne A. The GroES homolog of Helicobacter pylori confers protective immunity against mucosal infection in mice. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6499–6503. doi: 10.1073/pnas.92.14.6499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  23. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  24. Ho Y., Zhang Y. X. The sequence of the groES and groEL genes from the mouse pneumonitis agent of Chlamydia trachomatis. Gene. 1994 Apr 8;141(1):143–144. doi: 10.1016/0378-1119(94)90145-7. [DOI] [PubMed] [Google Scholar]
  25. Ilangumaran S., Ramanathan S., Shankernarayan N., Ramu G., Muthukkarauppan V. Immunological profiles of leprosy patients and healthy family contacts toward M. leprae antigens. Int J Lepr Other Mycobact Dis. 1996 Mar;64(1):6–14. [PubMed] [Google Scholar]
  26. Kaufmann S. H. Heat shock proteins and the immune response. Immunol Today. 1990 Apr;11(4):129–136. doi: 10.1016/0167-5699(90)90050-j. [DOI] [PubMed] [Google Scholar]
  27. Kikuta L. C., Puolakkainen M., Kuo C. C., Campbell L. A. Isolation and sequence analysis of the Chlamydia pneumoniae GroE operon. Infect Immun. 1991 Dec;59(12):4665–4669. doi: 10.1128/iai.59.12.4665-4669.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Launois P., N'Diaye M. N., Cartel J. L., Mane I., Drowart A., Van Vooren J. P., Sarthou J. L., Huygen K. Fibronectin-binding antigen 85 and the 10-kilodalton GroES-related heat shock protein are the predominant TH-1 response inducers in leprosy contacts. Infect Immun. 1995 Jan;63(1):88–93. doi: 10.1128/iai.63.1.88-93.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lydyard P. M., van Eden W. Heat shock proteins: immunity and immunopathology. Immunol Today. 1990 Jul;11(7):228–229. doi: 10.1016/0167-5699(90)90091-m. [DOI] [PubMed] [Google Scholar]
  30. Mande S. C., Mehra V., Bloom B. R., Hol W. G. Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae. Science. 1996 Jan 12;271(5246):203–207. doi: 10.1126/science.271.5246.203. [DOI] [PubMed] [Google Scholar]
  31. Morrison R. P., Belland R. J., Lyng K., Caldwell H. D. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med. 1989 Oct 1;170(4):1271–1283. doi: 10.1084/jem.170.4.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Morrison R. P., Lyng K., Caldwell H. D. Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J Exp Med. 1989 Mar 1;169(3):663–675. doi: 10.1084/jem.169.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morrison R. P., Su H., Lyng K., Yuan Y. The Chlamydia trachomatis hyp operon is homologous to the groE stress response operon of Escherichia coli. Infect Immun. 1990 Aug;58(8):2701–2705. doi: 10.1128/iai.58.8.2701-2705.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murzin A. G. Structural classification of proteins: new superfamilies. Curr Opin Struct Biol. 1996 Jun;6(3):386–394. doi: 10.1016/s0959-440x(96)80059-5. [DOI] [PubMed] [Google Scholar]
  35. Patton D. L., Sweeney Y. T., Kuo C. C. Demonstration of delayed hypersensitivity in Chlamydia trachomatis salpingitis in monkeys: a pathogenic mechanism of tubal damage. J Infect Dis. 1994 Mar;169(3):680–683. doi: 10.1093/infdis/169.3.680. [DOI] [PubMed] [Google Scholar]
  36. Rank R. G., Sanders M. M., Patton D. L. Increased incidence of oviduct pathology in the guinea pig after repeat vaginal inoculation with the chlamydial agent of guinea pig inclusion conjunctivitis. Sex Transm Dis. 1995 Jan-Feb;22(1):48–54. doi: 10.1097/00007435-199501000-00008. [DOI] [PubMed] [Google Scholar]
  37. Sheffield P. A., Moore D. E., Voigt L. F., Scholes D., Wang S. P., Grayston J. T., Daling J. R. The association between Chlamydia trachomatis serology and pelvic damage in women with tubal ectopic gestations. Fertil Steril. 1993 Dec;60(6):970–975. doi: 10.1016/s0015-0282(16)56394-8. [DOI] [PubMed] [Google Scholar]
  38. Suerbaum S., Thiberge J. M., Kansau I., Ferrero R. L., Labigne A. Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol Microbiol. 1994 Dec;14(5):959–974. doi: 10.1111/j.1365-2958.1994.tb01331.x. [DOI] [PubMed] [Google Scholar]
  39. Tam J. P. High-density multiple antigen-peptide system for preparation of antipeptide antibodies. Methods Enzymol. 1989;168:7–15. doi: 10.1016/0076-6879(89)68004-4. [DOI] [PubMed] [Google Scholar]
  40. Tam J. P., Lu Y. A. Vaccine engineering: enhancement of immunogenicity of synthetic peptide vaccines related to hepatitis in chemically defined models consisting of T- and B-cell epitopes. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9084–9088. doi: 10.1073/pnas.86.23.9084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tam J. P. Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5409–5413. doi: 10.1073/pnas.85.15.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Taylor M. W., Feng G. S. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991 Aug;5(11):2516–2522. [PubMed] [Google Scholar]
  43. Toye B., Laferrière C., Claman P., Jessamine P., Peeling R. Association between antibody to the chlamydial heat-shock protein and tubal infertility. J Infect Dis. 1993 Nov;168(5):1236–1240. doi: 10.1093/infdis/168.5.1236. [DOI] [PubMed] [Google Scholar]
  44. Wagar E. A., Schachter J., Bavoil P., Stephens R. S. Differential human serologic response to two 60,000 molecular weight Chlamydia trachomatis antigens. J Infect Dis. 1990 Oct;162(4):922–927. doi: 10.1093/infdis/162.4.922. [DOI] [PubMed] [Google Scholar]
  45. Witkin S. S., Jeremias J., Toth M., Ledger W. J. Cell-mediated immune response to the recombinant 57-kDa heat-shock protein of Chlamydia trachomatis in women with salpingitis. J Infect Dis. 1993 Jun;167(6):1379–1383. doi: 10.1093/infdis/167.6.1379. [DOI] [PubMed] [Google Scholar]
  46. Witkin S. S., Jeremias J., Toth M., Ledger W. J. Proliferative response to conserved epitopes of the Chlamydia trachomatis and human 60-kilodalton heat-shock proteins by lymphocytes from women with salpingitis. Am J Obstet Gynecol. 1994 Aug;171(2):455–460. doi: 10.1016/0002-9378(94)90282-8. [DOI] [PubMed] [Google Scholar]
  47. Yuan Y., Lyng K., Zhang Y. X., Rockey D. D., Morrison R. P. Monoclonal antibodies define genus-specific, species-specific, and cross-reactive epitopes of the chlamydial 60-kilodalton heat shock protein (hsp60): specific immunodetection and purification of chlamydial hsp60. Infect Immun. 1992 Jun;60(6):2288–2296. doi: 10.1128/iai.60.6.2288-2296.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES