Abstract
A naturally occurring azasterol has been shown to inhibit sterol transmethylation in both in vitro and in vivo in the yeast Saccharomyces cerevisiae. The inhibition was competitive, with a calculated dissociation constant of 43 muM. The compound prevented the accumulation of ergosterol in aerobically adapting cells. Cultures forced to gain energy by respiration were found to be much more sensitive to growth inhibition by the azasterol than those cells fermenting glucose. The growth inhibition is reversible at low concentrations of the azasterol.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams B. G., Parks L. W. Differential effect of respiratory inhibitors on ergosterol synthesis by Saccharomyces cerevisiae during adaptation to oxygen. J Bacteriol. 1969 Oct;100(1):370–376. doi: 10.1128/jb.100.1.370-376.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey R. B., Parks L. W. Yeast sterol esters and their relationship to the growth of yeast. J Bacteriol. 1975 Nov;124(2):606–612. doi: 10.1128/jb.124.2.606-612.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boeck L. D., Hoehn M. M., Westhead J. E., Wolter R. K., Thomas D. N. New azasteroidal antifungal antibotics from Geotrichum flavo-brunneum. I. Discovery and fermentation studies. J Antibiot (Tokyo) 1975 Feb;28(2):95–101. doi: 10.7164/antibiotics.28.95. [DOI] [PubMed] [Google Scholar]
- Chamberlin J. W., Chaney M. O., Chen S., Demarco P. V., Jones N. D., Occolowitz J. L. Structure of antibiotic A 25822 B, a novel nitrogen-containing C28-sterol with antifungal properties. J Antibiot (Tokyo) 1974 Dec;27(12):992–993. doi: 10.7164/antibiotics.27.992. [DOI] [PubMed] [Google Scholar]
- Gordee R. S., Butler T. F. New azasteroidal antifungal antibiotics from Geotrichum flavo-brunneum. III. Biological activity. J Antibiot (Tokyo) 1975 Feb;28(2):112–117. doi: 10.7164/antibiotics.28.112. [DOI] [PubMed] [Google Scholar]
- Higgins M. L., Chesnut R. W., Leach F. R., Morgan J. G., Berlin K. D., Durham N. N. Effect of 15-azasteroid analogues on cell culture growth. Steroids. 1972 Mar;19(3):301–314. doi: 10.1016/0039-128x(72)90073-6. [DOI] [PubMed] [Google Scholar]
- KLEIN H. P., EATON N. R., MURPHY J. C. Net synthesis of sterols in resting cells of Saccharomyces cerevisiae. Biochim Biophys Acta. 1954 Apr;13(4):591–591. doi: 10.1016/0006-3002(54)90382-0. [DOI] [PubMed] [Google Scholar]
- Moore J. T., Jr, Gaylor J. L. Investigation of an S-adenosylmethionine: delta 24-sterol methyltransferase in ergosterol biosynthesis in yeast. Specificity of sterol substrates and inhibitors. J Biol Chem. 1970 Sep 25;245(18):4684–4688. [PubMed] [Google Scholar]
- NAGAI S., YANAGISHIMA N., NAGAI H. Advances in the study of respiration-deficient (RD) mutation in yeast and other microorganisms. Bacteriol Rev. 1961 Dec;25:404–426. doi: 10.1128/br.25.4.404-426.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OGUR M., ST. JOHN R., NAGAI S. Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science. 1957 May 10;125(3254):928–929. doi: 10.1126/science.125.3254.928. [DOI] [PubMed] [Google Scholar]
- STARR P. R., PARKS L. W. Effect of temperature on sterol metabolism in yeast. J Cell Comp Physiol. 1962 Apr;59:107–110. doi: 10.1002/jcp.1030590203. [DOI] [PubMed] [Google Scholar]
- Singh R. A., Weiss J. F., Naber E. C. Effect of azasterols on sterol metabolism in the laying hen. Poult Sci. 1972 Mar;51(2):449–457. doi: 10.3382/ps.0510449. [DOI] [PubMed] [Google Scholar]
- Starr P. R., Parks L. W. Transmethylation of sterols in aerobically adapting Saccharomyces cerevisiae. J Bacteriol. 1972 Jan;109(1):236–242. doi: 10.1128/jb.109.1.236-242.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TURNER J. R., PARKS L. W. TRANSMETHYLATION PRODUCTS AS INTERMEDIATES IN ERGOSTEROL BIOSYNTHESIS IN YEAST. Biochim Biophys Acta. 1965 Apr 5;98:394–401. doi: 10.1016/0005-2760(65)90132-3. [DOI] [PubMed] [Google Scholar]