Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Dec;128(3):735–740. doi: 10.1128/jb.128.3.735-740.1976

Protein synthesis and degradation in a leucine auxotroph of Escherichia coli.

J J Aguanno, A R Larrabee
PMCID: PMC232763  PMID: 791928

Abstract

The synthesis and degradation of the soluble and sodium dodecyl sulfate-(SDS)-solubilized protein fractions of Escherichia coli were studied in both growing and nongrowing cultures. When separated according to molecular weight on SDS-polyacrylamide gels, the proteins of both fractions of growing cells undergo no measureable differential synthesis or degradation during logarithmic growth. However, when a leucine auxotroph is suspended in medium containing 5.3 muM leucine (a level that will not sustain growth), the SDS-solubilized protein of such a nongrowing culture shows a rapid synthesis of two protein components (32,000 and 12,000 daltons) found only in the out membrane.

Full text

PDF
735

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borek E., Ponticorvo L., Rittenberg D. PROTEIN TURNOVER IN MICRO-ORGANISMS. Proc Natl Acad Sci U S A. 1958 May;44(5):369–374. doi: 10.1073/pnas.44.5.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunschede H., Bremer H. Synthesis and breakdown of proteins in Escherichia coli during amino-acid starvation. J Mol Biol. 1971 Apr 14;57(1):35–57. doi: 10.1016/0022-2836(71)90118-5. [DOI] [PubMed] [Google Scholar]
  3. Cassada R., Matzura H. The polypeptide chain growth rate in amino acid-starved Escherichia coli determined by a novel method. Biochim Biophys Acta. 1976 Jan 19;418(2):204–216. doi: 10.1016/0005-2787(76)90070-8. [DOI] [PubMed] [Google Scholar]
  4. FOX G., BROWN J. W. Protein degradation in Escherichia coli in the logarithmic phase of growth. Biochim Biophys Acta. 1961 Jan 15;46:387–389. doi: 10.1016/0006-3002(61)90765-x. [DOI] [PubMed] [Google Scholar]
  5. HOGNESS D. S., COHN M., MONOD J. Studies on the induced synthesis of beta-galactosidase in Escherichia coli: the kinetics and mechanism of sulfur incorporation. Biochim Biophys Acta. 1955 Jan;16(1):99–116. doi: 10.1016/0006-3002(55)90188-8. [DOI] [PubMed] [Google Scholar]
  6. Hindennach I., Henning U. The major proteins of the Excherichia coli outer cell envelope membrane. Preparative isolation of all major membrane proteins. Eur J Biochem. 1975 Nov 1;59(1):207–213. doi: 10.1111/j.1432-1033.1975.tb02443.x. [DOI] [PubMed] [Google Scholar]
  7. James R. Identification of an outer membrane protein of Escherichia coli, with a role in the coordination of deoxyribonucleic acid replication and cell elongation. J Bacteriol. 1975 Nov;124(2):918–929. doi: 10.1128/jb.124.2.918-929.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KOCH A. L., LEVY H. R. Protein turnover in growing cultures of Escherichia coli. J Biol Chem. 1955 Dec;217(2):947–957. [PubMed] [Google Scholar]
  9. Levine E. M. Protein turnover in Escherichia coli as measured with an equilibration apparatus. J Bacteriol. 1965 Dec;90(6):1578–1588. doi: 10.1128/jb.90.6.1578-1588.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MANDELSTAM J. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem J. 1958 May;69(1):110–119. doi: 10.1042/bj0690110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MELCHIOR J. B., KLIOZE O., KLOTZ I. M. Further studies of the synthesis of protein by Escherichia coli. J Biol Chem. 1951 Mar;189(1):411–420. [PubMed] [Google Scholar]
  12. MUNKRES K. D., RICHARDS F. M. THE PURIFICATION AND PROPERTIES OF NEUROSPORA MALATE DEHYDROGENASE. Arch Biochem Biophys. 1965 Mar;109:466–479. doi: 10.1016/0003-9861(65)90391-7. [DOI] [PubMed] [Google Scholar]
  13. Nath K., Koch A. L. Protein degradation in Escherichia coli. I. Measurement of rapidly and slowly decaying components. J Biol Chem. 1970 Jun 10;245(11):2889–2900. [PubMed] [Google Scholar]
  14. Pine M. J. Heterogeneity of protein turnover in Escherichia coli. Biochim Biophys Acta. 1965 Jul 8;104(2):439–456. doi: 10.1016/0304-4165(65)90349-1. [DOI] [PubMed] [Google Scholar]
  15. Pine M. J. Steady-state measurement of the turnover of amino acid in the cellular proteins of growing Escherichia coli: existence of two kinetically distinct reactions. J Bacteriol. 1970 Jul;103(1):207–215. doi: 10.1128/jb.103.1.207-215.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Powell G. L., Bauza M., Larrabee A. R. The stability of acyl carrier protein in Escherichia coli. J Biol Chem. 1973 Jun 25;248(12):4461–4466. [PubMed] [Google Scholar]
  17. ROTMAN B., SPIEGELMAN S. On the origin of the carbon in the induced synthesis beta-galactosidase in Escherichia coli. J Bacteriol. 1954 Oct;68(4):419–429. doi: 10.1128/jb.68.4.419-429.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosenbusch J. P. Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecyl sulfate binding. J Biol Chem. 1974 Dec 25;249(24):8019–8029. [PubMed] [Google Scholar]
  19. Schlessinger D., Ben-Hamida F. Turnover of protein in Escherichia coli starving for nitrogen. Biochim Biophys Acta. 1966 Apr 18;119(1):171–182. doi: 10.1016/0005-2787(66)90048-7. [DOI] [PubMed] [Google Scholar]
  20. Tweto J., Dehlinger P., Larrabee A. R. Relative turnover rates of subunits of rat liver fatty acid synthetase. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1371–1377. doi: 10.1016/0006-291x(72)90864-9. [DOI] [PubMed] [Google Scholar]
  21. Uemura J., Mizushima S. Isolation of outer membrane proteins of Escherchia coli and their characterization on polyacrylamide gel. Biochim Biophys Acta. 1975 Dec 1;413(2):163–176. doi: 10.1016/0005-2736(75)90101-7. [DOI] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  23. Willetts N. S. Intracellular protein breakdown in growing cells of Escherichia coli. Biochem J. 1967 May;103(2):462–466. doi: 10.1042/bj1030462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Willetts N. S. Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochem J. 1967 May;103(2):453–461. doi: 10.1042/bj1030453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wu M. C., Heath E. C. Isolation and characterization of lipopolysaccharide protein from Escherichia coli. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2572–2576. doi: 10.1073/pnas.70.9.2572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamato I., Anraku Y., Hirosawa K. Cytoplasmic membrane vesicles of Escherichia coli. A simple method for preparing the cytoplasmic and outer membranes. J Biochem. 1975 Apr;77(4):705–718. doi: 10.1093/oxfordjournals.jbchem.a130774. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES