Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Dec;128(3):741–748. doi: 10.1128/jb.128.3.741-748.1976

Evidence for a negative membrane potential and for movement of C1- against its electrochemical gradient in the ascomycete Neocosmospora vasinfecta.

A G Miller, K Budd
PMCID: PMC232764  PMID: 11206

Abstract

The iodides of three lipid-soluble cations (dibenzyldimethylammonium; tribenzylmethylammonium, TBMA+; ethyldimethylbenzylammonium) were synthesized by the reaction of 14C-labeled methyl or 14C-labeled ethyl iodide with the appropriate secondary of tertiary amine and used in an attempt to measure the transmembrane electrical potential difference in Neocosmospora. Only mycelium containing high levels of Na+ accumulated measureable amounts of these cations and only above pH 6. Uptake was reduced in the presence of exogenous K+, Na+, Mg2+, or tris(hydroxymethyl)aminomethane. The velocity of TBMA+ uptake was proportional to its concentration between 46 and 427 muM. Neither the rate nor the extent of TBMB+ uptake was greatly affected by the presence of a fivefold excess of either dibenzyldimethylammonium or ethyldimethylbenzylammonium, even though these cations were themselves accumulated. The uncoupler m-chlorophenylhydrazone induced loss of previously accumulated TBMA+ from the mycelium. Anaerobiosis and cold (5 degrees C) temperature both inhibited TBMA+ uptake but did not induce the loss of previously accumulated TBMA+. The uptake of lipophilic cations by Na+-rich mycelium indicated a minimum transmembrane electrical potential of -60 to -70 mV (inside negative). Net uptake of these cations appeared to be strongly influenced by the availability of endogenous exchangeable cations and by the presence of other exogenous cations, as well as by the membrane potential. Despite these limitations, transport of C1- by Na+-rich mycelium appeared to take place against the electrochemical gradient for C1-.

Full text

PDF
741

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asghar S. S., Levin E., Harold F. M. Accumulation of neutral amino acids by Streptococcus faecalis. Energy coupling by a proton-motive force. J Biol Chem. 1973 Aug 10;248(15):5225–5233. [PubMed] [Google Scholar]
  2. Budd K. Potassium fluxes in Neocosmospora vasinfecta. J Gen Microbiol. 1975 Oct;90(2):311–320. doi: 10.1099/00221287-90-2-311. [DOI] [PubMed] [Google Scholar]
  3. Budd K. Potassium transport in non-growing mycelium of Neocosmospora vasinfecta. J Gen Microbiol. 1969 Dec;59(2):229–238. doi: 10.1099/00221287-59-2-229. [DOI] [PubMed] [Google Scholar]
  4. Budd K. The assimilation of bicarbonate by Neocosmospora vasinfecta. Can J Microbiol. 1969 May;15(5):389–398. doi: 10.1139/m69-070. [DOI] [PubMed] [Google Scholar]
  5. Griniuviene B., Chmieliauskaite V., Grinius L. Energy-linked transport of permeant ions in Escherichia coli cells: evidence for membrane potential generation by proton-pump. Biochem Biophys Res Commun. 1974 Jan;56(1):206–213. doi: 10.1016/s0006-291x(74)80335-9. [DOI] [PubMed] [Google Scholar]
  6. Harold F. M., Baarda J. R. Gramicidin, valinomycin, and cation permeability of Streptococcus faecalis. J Bacteriol. 1967 Jul;94(1):53–60. doi: 10.1128/jb.94.1.53-60.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harold F. M., Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. J Membr Biol. 1972;8(1):27–44. doi: 10.1007/BF01868093. [DOI] [PubMed] [Google Scholar]
  8. Harold F. M., Papineau D. Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion. J Membr Biol. 1972;8(1):45–62. doi: 10.1007/BF01868094. [DOI] [PubMed] [Google Scholar]
  9. Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
  10. Hoeberichts J. A., Borst-Pauwels G. W. Effect of tetraphenylboron upon the uptake of the lipophilic cation dibenzyldimethylammonium by yeast cells. Biochim Biophys Acta. 1975 Dec 1;413(2):248–251. doi: 10.1016/0005-2736(75)90109-1. [DOI] [PubMed] [Google Scholar]
  11. Laris P. C., Bahr D. P., Chaffee R. R. Membrane potentials in mitochondrial preparations as measured by means of a cyanine dye. Biochim Biophys Acta. 1975 Mar 20;376(3):415–425. doi: 10.1016/0005-2728(75)90163-2. [DOI] [PubMed] [Google Scholar]
  12. Laris P. C., Pershadsingh H. A. Estimations of membrane potentials in Streptococcus faecalis by means of a fluorescent probe. Biochem Biophys Res Commun. 1974 Apr 8;57(3):620–626. doi: 10.1016/0006-291x(74)90591-9. [DOI] [PubMed] [Google Scholar]
  13. Miller A. G., Budd K. Halide uptake by the filamentous ascomycete Neocosmospora vasinfecta. J Bacteriol. 1975 Jan;121(1):91–98. doi: 10.1128/jb.121.1.91-98.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miller A. G., Budd K. The development of an increased rate of Cl- uptake in the ascomycete Neocosmospora vasinfecta. Can J Microbiol. 1975 Aug;21(8):1211–1216. doi: 10.1139/m75-181. [DOI] [PubMed] [Google Scholar]
  15. Schuldiner S., Kaback H. R. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry. 1975 Dec 16;14(25):5451–5461. doi: 10.1021/bi00696a011. [DOI] [PubMed] [Google Scholar]
  16. Slayman C. L. Electrical properties of Neurospora crassa. Effects of external cations on the intracellular potential. J Gen Physiol. 1965 Sep;49(1):69–92. doi: 10.1085/jgp.49.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Slayman C. L., Long W. S., Lu C. Y. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol. 1973;14(4):305–338. doi: 10.1007/BF01868083. [DOI] [PubMed] [Google Scholar]
  18. Slayman C. L. Movement of ions and electrogenesis in microorganisms. Am Zool. 1970 Aug;10(3):377–392. doi: 10.1093/icb/10.3.377. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES