Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Dec;128(3):815–826. doi: 10.1128/jb.128.3.815-826.1976

Complexity of the ultraviolet mutation frequency response curve in Escherichia coli B/r: SOS induction, one-lesion and two-lesion mutagenesis.

C O Doudney
PMCID: PMC232773  PMID: 791935

Abstract

Three distinct sections of the ultraviolet mutation frequency response (MFR) curve toward tryptophan prototrophy have been demonstrated in Excherichia coli B/r WP2 trp thy and its uvrA derivative in log-phase growth in minimal medium. The initial section, which appears fluence-squared, may reflect the necessity, if mutation is to result, for induction of two lesions, one located within the potentially mutated genetic locus and the other damaging deoxyribonucleic acid replication and resulting in inducation of the error-prone SOS repair function. A second linear section is ascribed to the continued induction, after exposure above that sufficient for complete SOS expression, of isolated lesions which lead to mutation in potentially mutated loci. The third section demonstrates an increased rate of mutagenesis and suggests the induction of two lesions in proximity which result in additional mutations. Split-exposure studies support the inducible nature of the SOS function and suggest that mutation frequency decline (MFD) is due to exicion resulting from or related to the prevention of SOS induction by inhibition of protein synthesis. Preirradiation tryptophan starvation of the uvr+ strain for 30 min decrease MFR in the first and second sections of the curve. Reduction of MFR in the third section requires more prestarvation time and is blocked by nalidixic acid. The decreased MFR of the first and second sections ascribed to promotion of postirradiation MFD based on excision and that of third section to completion of the chromosome during the prestarvation period.

Full text

PDF
815

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billen D. Replication of the bacterial chromosome: location of new initiation sites after irradiation. J Bacteriol. 1969 Mar;97(3):1169–1175. doi: 10.1128/jb.97.3.1169-1175.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonura T., Smith K. C. Enzymatic production of deoxyribonucleic acid double-strand breaks after ultraviolet irradiation of Escherichia coli K-12. J Bacteriol. 1975 Feb;121(2):511–517. doi: 10.1128/jb.121.2.511-517.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bridges B. A. A note on the mechanism of UV mutagenesis in Escherichia coli. Mutat Res. 1966 Aug;3(4):273–279. doi: 10.1016/0027-5107(66)90034-0. [DOI] [PubMed] [Google Scholar]
  4. Bridges B. A., Dennis R. E., Munson R. J. Differential induction and repair of ultraviolet damage leading to true revesions and external suppressor mutations of an ochre codon in Escherichia coli B-r WP2. Genetics. 1967 Dec;57(4):897–908. doi: 10.1093/genetics/57.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Conde M. F., Boynton J. E., Gillham N. W., Harris E. H., Tingle C. L., Wang W. L. Chloroplast genes in Chlamydomonas affecting organelle ribosomes. Genetic and biochemical analysis of analysis of antibiotic-resistant mutants at several gene loci. Mol Gen Genet. 1975 Oct 3;140(3):183–220. doi: 10.1007/BF00334266. [DOI] [PubMed] [Google Scholar]
  6. DOUDNEY C. O., HAAS F. L. Chloramphenicol, nucleic acid synthesis and mutation induced by ultraviolet light. Biochim Biophys Acta. 1960 May 20;40:375–377. doi: 10.1016/0006-3002(60)91373-1. [DOI] [PubMed] [Google Scholar]
  7. DOUDNEY C. O. Nucleic acid formation and ultraviolet light-induced mutation in bacteria: some considerations in light of recent advances. J Cell Comp Physiol. 1961 Dec;58(3):145–150. doi: 10.1002/jcp.1030580414. [DOI] [PubMed] [Google Scholar]
  8. Defais M., Fauquet P., Radman M., Errera M. Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology. 1971 Feb;43(2):495–503. doi: 10.1016/0042-6822(71)90321-7. [DOI] [PubMed] [Google Scholar]
  9. Doudney C O, Young C S. Ultraviolet Light Induced Mutation and Deoxyribonucleic Acid Replication in Bacteria. Genetics. 1962 Sep;47(9):1125–1138. doi: 10.1093/genetics/47.9.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doudney C. O. Chloramphenicol effects on DNA replication in UV-damaged bacteria. Mutat Res. 1973 Jan;17(1):1–12. doi: 10.1016/0027-5107(73)90247-9. [DOI] [PubMed] [Google Scholar]
  11. Doudney C. O. Deoxyribonucleic acid replication in UV-damaged bacteria revisited. Mutat Res. 1971 Jun;12(2):121–128. doi: 10.1016/0027-5107(71)90133-3. [DOI] [PubMed] [Google Scholar]
  12. Doudney C. O., Haas F. L. MUTATION INDUCTION AND MACROMOLECULAR SYNTHESIS IN BACTERIA. Proc Natl Acad Sci U S A. 1959 May;45(5):709–722. doi: 10.1073/pnas.45.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doudney C. O. Ultraviolet light effects on the bacterial cell. Curr Top Microbiol Immunol. 1968;46:116–175. doi: 10.1007/978-3-642-46121-7_4. [DOI] [PubMed] [Google Scholar]
  14. Hanawalt P. C. The U.V. sensitivity of bacteria: its relation to the DNA replication cycle. Photochem Photobiol. 1966 Jan;5(1):1–12. [PubMed] [Google Scholar]
  15. Harm W. Dark repair of photorepairable UV lesions in Escherichia coli. Mutat Res. 1968 Jul-Aug;6(1):25–35. doi: 10.1016/0027-5107(68)90100-0. [DOI] [PubMed] [Google Scholar]
  16. Hewitt R., Billen D. Reorientation of chromosome replication after exposure to ultraviolet light of Escherichia coli. J Mol Biol. 1965 Aug;13(1):40–53. doi: 10.1016/s0022-2836(65)80078-x. [DOI] [PubMed] [Google Scholar]
  17. Hill R. F. Ultraviolet-induced lethality and reversion to prototrophy in Escherichia coli strains with normal and reduced dark repair ability. Photochem Photobiol. 1965 Jun;4(3):563–568. doi: 10.1111/j.1751-1097.1965.tb09774.x. [DOI] [PubMed] [Google Scholar]
  18. Moss S. H., Davies D. J. Interrelationship of repair mechanisms in ultraviolet-irradiated Escherichia coli. J Bacteriol. 1974 Oct;120(1):15–23. doi: 10.1128/jb.120.1.15-23.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nishioka H., Doudney C. O. Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. Mutat Res. 1969 Sep-Oct;8(2):215–228. doi: 10.1016/0027-5107(69)90001-3. [DOI] [PubMed] [Google Scholar]
  20. Nishioka H., Doudney C. O. Different modes of loss of photoreversibility of ultraviolet light-induced true and suppressor mutations to tryptophan independence in an auxotrophic strain of Escherichia coli. Mutat Res. 1970 Apr;9(4):349–358. doi: 10.1016/0027-5107(70)90017-5. [DOI] [PubMed] [Google Scholar]
  21. Rudé J. M., Doudney C. O. Relation between survival and deoxyribonucleic acid replication in ultraviolet-irradiated resistant and sensitive strains of Escherichia coli B-r. J Bacteriol. 1973 Mar;113(3):1161–1169. doi: 10.1128/jb.113.3.1161-1169.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sedgwick S. G. Genetic and kinetic evidence for different types of postreplication repair in Escherichia coli B. J Bacteriol. 1975 Jul;123(1):154–161. doi: 10.1128/jb.123.1.154-161.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sedgwick S. G. Inducible error-prone repair in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2753–2757. doi: 10.1073/pnas.72.7.2753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith K. C., O'Leary M. E. The pitfalls of measuring DNA synthesis kinetics as exemplifed in ultraciolet radiation studies. Biochim Biophys Acta. 1968 Dec 17;169(2):430–438. doi: 10.1016/0005-2787(68)90051-8. [DOI] [PubMed] [Google Scholar]
  25. WITKIN E. M. Time, temperature, and protein synthesis: a study of ultraviolet-induced mutation in bacteria. Cold Spring Harb Symp Quant Biol. 1956;21:123–140. doi: 10.1101/sqb.1956.021.01.011. [DOI] [PubMed] [Google Scholar]
  26. Witkin E. M. Elevated mutability of polA derivatives of Escherichia coli B/r at sublethal doses of ultraviolet light: evidence for an inducible error-prone repair system ("SOS repair") and its anomalous expression in these strains. Genetics. 1975 Jun;79 (Suppl):199–213. [PubMed] [Google Scholar]
  27. Witkin E. M., George D. L. Ultraviolet mutagenesis in polA and UvrA polA derivatives of Escherichia coli B-R: evidence for an inducible error-prone repair system. Genetics. 1973 Apr;73(Suppl):91–10. [PubMed] [Google Scholar]
  28. Witkin E. M. Thermal enhancement of ultraviolet mutability in a dnaB uvrA derivative of Escherichia coli B/r: evidence for inducible error-prone repair. Basic Life Sci. 1975;5A:369–378. doi: 10.1007/978-1-4684-2895-7_49. [DOI] [PubMed] [Google Scholar]
  29. Witkin E. M. Thermal enhancement of ultraviolet mutability in a tif-1 uvrA derivative of Escherichia coli B-r: evidence that ultraviolet mutagenesis depends upon an inducible function. Proc Natl Acad Sci U S A. 1974 May;71(5):1930–1934. doi: 10.1073/pnas.71.5.1930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Witkin E. M. Ultraviolet-induced mutation and DNA repair. Annu Rev Microbiol. 1969;23:487–514. doi: 10.1146/annurev.mi.23.100169.002415. [DOI] [PubMed] [Google Scholar]
  31. Witkin E. M., Wermundsen I. E. Do ultraviolet-induced mutations to streptomycin resistance exhibit susceptibility to mutation frequency decline? Mutat Res. 1973 Aug;19(2):261–264. doi: 10.1016/0027-5107(73)90085-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES