Abstract
An arginine regulatory mutant (i.e., mutated in the argR gene) has been isolated from a strain of Salmonella typhimurium LT2. The argR mutant was found to excrete arginine into the growth medium with glycerol but not glucose as carbon source. Constitutive synthesis of arginine biosynthetic enzymes was observed. Whereas previous results (A. T. Abd-E1-A1 and J. L. Ingraham, Abstr. Annu. Meet. Am. Soc. Microbiol. 1975, K169, p. 175) have shown constitutive synthesis of carbamyl phosphate synthetase in the argR mutant, the regulation of the synthesis of the last five enzymes of the pyrimidine pathway was unaffected. However, in pyrH mutants, known to exhibit derepressed synthesis of the pyrimidine enzymes, a 10-fold derepression of ornithine transcarbamylase was observed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abd-el-Al A. Arginine-auxotrophic phenotype resulting from a mutation in the pryA gene of Escherichia coli B-r. J Bacteriol. 1969 Jan;97(1):466–468. doi: 10.1128/jb.97.1.466-468.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baumberg S. Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Mol Gen Genet. 1970;106(2):162–173. doi: 10.1007/BF00323835. [DOI] [PubMed] [Google Scholar]
- Berg C. M., Rossi J. J. Proline excretion and indirect suppression in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1974 Jun;118(3):928–934. doi: 10.1128/jb.118.3.928-934.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bollon A. P., Vogel H. J. Regulation of argE-argH expression with arginine derivatives in Escherichia coli: extreme non-uniformity of repression and conditional repressive action. J Bacteriol. 1973 May;114(2):632–640. doi: 10.1128/jb.114.2.632-640.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORINI L., GUNDERSEN W. Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli B. Proc Natl Acad Sci U S A. 1961 Jul 15;47:961–971. doi: 10.1073/pnas.47.7.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorini L., Beckwith J. R. Suppression. Annu Rev Microbiol. 1966;20:401–422. doi: 10.1146/annurev.mi.20.100166.002153. [DOI] [PubMed] [Google Scholar]
- Hartman P. E. Some improved methods in P22 transduction. Genetics. 1974 Apr;76(4):625–631. doi: 10.1093/genetics/76.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingraham J. L., Neuhard J. Cold-sensitive mutants of Salmonella typhimurium defective in uridine monophosphate kinase (pyrH). J Biol Chem. 1972 Oct 10;247(19):6259–6265. [PubMed] [Google Scholar]
- Itikawa H., Baumberg S., Vogel H. J. Enzymic basis for a genetic suppression: accumulation and deacylation of N-acetylglutamic gamma-semialdehyde in enterobacterial mutants. Biochim Biophys Acta. 1968 Jul 9;159(3):547–550. doi: 10.1016/0005-2744(68)90142-3. [DOI] [PubMed] [Google Scholar]
- Kadner R. J., Maas W. K. Regulatory gene mutations affecting arginine biosynthesis in Escherichia coli. Mol Gen Genet. 1971;111(1):1–14. doi: 10.1007/BF00286549. [DOI] [PubMed] [Google Scholar]
- Kelln R. A., Foltermann K. F., O'Donovan G. A. Location of the argR gene on the chromosome of Salmonella typhimurium. Mol Gen Genet. 1975 Sep 8;139(4):277–284. doi: 10.1007/BF00267967. [DOI] [PubMed] [Google Scholar]
- Kelln R. A., Kinahan J. J., Foltermann K. F., O'Donovan G. A. Pyrimidine biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in the presence of cytidine. J Bacteriol. 1975 Nov;124(2):764–774. doi: 10.1128/jb.124.2.764-774.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuo T. T., Stocker B. A. Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement. J Bacteriol. 1969 May;98(2):593–598. doi: 10.1128/jb.98.2.593-598.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAAS W. K. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:183–191. doi: 10.1101/sqb.1961.026.01.023. [DOI] [PubMed] [Google Scholar]
- NOVICK R. P., MAAS W. K. Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J Bacteriol. 1961 Feb;81:236–240. doi: 10.1128/jb.81.2.236-240.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piérard A., Glansdorff N., Yashphe J. Mutations affecting uridine monophosphate pyrophosphorylase or the argR gene in Escherichia coli. Effects on carbamoyl phosphate and pyrimidine biosynthesis and on uracil uptake. Mol Gen Genet. 1972;118(3):235–245. doi: 10.1007/BF00333460. [DOI] [PubMed] [Google Scholar]
- Piérard A., Wiame J. M. Regulation and mutation affecting a glutamine dependent formation of carbamyl phosphate in Escherichia coli. Biochem Biophys Res Commun. 1964 Feb 18;15(1):76–81. doi: 10.1016/0006-291x(64)90106-8. [DOI] [PubMed] [Google Scholar]
- Sanderson K. E. Linkage map of Salmonella typhimurium, edition IV. Bacteriol Rev. 1972 Dec;36(4):558–586. doi: 10.1128/br.36.4.558-586.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz M., Neuhard J. Control of expression of the pyr genes in Salmonella typhimurium: effects of variations in uridine and cytidine nucleotide pools. J Bacteriol. 1975 Mar;121(3):814–822. doi: 10.1128/jb.121.3.814-822.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Linkage map of Escherichia coli strain K-12. Bacteriol Rev. 1972 Dec;36(4):504–524. doi: 10.1128/br.36.4.504-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogel H. J., Vogel R. H. Enzymes of arginine biosynthesis and their repressive control. Adv Enzymol Relat Areas Mol Biol. 1974;40(0):65–90. doi: 10.1002/9780470122853.ch3. [DOI] [PubMed] [Google Scholar]
- Yan Y., Demerec M. Genetic analysis of pyrimidine mutants of Salmonella typhimurium. Genetics. 1965 Sep;52(3):643–651. doi: 10.1093/genetics/52.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]