Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Oct;128(1):114–116. doi: 10.1128/jb.128.1.114-116.1976

Release of enzymes by normal and wall-free cells of Chlamydomonas.

R Loppes
PMCID: PMC232832  PMID: 977535

Abstract

The phosphatase produced by the wild-type strain of Chlamydomonas reinhardi in media deprived of inorganic phosphate are found partly inside and partly outside the cells. The same enzymes are almost completely released by a mutant strain defective in cell wall formation. It is proposed that the failure of cell wall mutants to survive in certain conditions is related to their inability to retain certain essential compounds that are normally associated to the cell wall.

Full text

PDF
114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold W. N. Location of acid phosphatase and -fructofuranosidase within yeast cell envelopes. J Bacteriol. 1972 Dec;112(3):1346–1352. doi: 10.1128/jb.112.3.1346-1352.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  3. Lopes J., Gottfried S., Rothfield L. Leakage of periplasmic enzymes by mutants of Escherichia coli and Salmonella typhimurium: isolation of "periplasmic leaky" mutants. J Bacteriol. 1972 Feb;109(2):520–525. doi: 10.1128/jb.109.2.520-525.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Loppes R., Deltour R. Changes in phosphatase activity associated with cell wall defects in Chlamydomonas reinhardi. Arch Microbiol. 1975 May 5;103(3):247–250. doi: 10.1007/BF00436357. [DOI] [PubMed] [Google Scholar]
  5. Loppes R., Matagne R. F. Acid phosphatase mutants in Chlamydomonas: isolation and characterization by biochemical, electrophoretic and genetic analysis. Genetics. 1973 Dec;75(4):593–604. doi: 10.1093/genetics/75.4.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mangiarotti G., Apirion D., Schlessinger D. Selection of sucrose-dependent Escherichia coli to obtain envelope mutants and fragile cultures. Science. 1966 Aug 19;153(3738):892–894. doi: 10.1126/science.153.3738.892. [DOI] [PubMed] [Google Scholar]
  7. Matagne R. F., Loppes R., Deltour R. Phosphatase of Chlamydomonas reinhardi: biochemical and cytochemical approach with specific mutants. J Bacteriol. 1976 May;126(2):937–950. doi: 10.1128/jb.126.2.937-950.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Matagne R. F., Loppes R. Isolation and study of mutants lacking a derepressible phosphatase in Chlamydomonas reinhardi. Genetics. 1975 Jun;80(2):239–250. doi: 10.1093/genetics/80.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moreno F., Ochoa A. G., Gascón S., Villanueva J. R. Molecular forms of yeast invertase. Eur J Biochem. 1975 Jan 15;50(3):571–579. doi: 10.1111/j.1432-1033.1975.tb09898.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES