Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Oct;128(1):117–122. doi: 10.1128/jb.128.1.117-122.1976

Selective inactivation of nitrogenase in Azotobacter vinelandii batch cultures.

D Kleiner, J A Kleinschmidt
PMCID: PMC232833  PMID: 977536

Abstract

When the exhaustion of sucrose or sulfate or the induction of encystment (by incubation in 0.2% beta-hydroxybutyrate) leads to termination of growth in Azotobacter vinelandii batch cultures, the nitrogenase levels in the organisms decreased rapidly, whereas glutamate synthase and glutamine synthetase levels remained unaltered. Glutamate dehydrogenase activities were low during the whole culture cycle, indicating that ammonia assimilation proceeds via glutamine. Toward depletion of sucrose or during induction of encystment, slight secretion of ammonia with subsequent reabsorption was occasionally observed, whereas massive ammonia excretion occurred when the sulfate became exhausted. The extracellular ammonia levels were paralleled by changes in the glutamine synthetase activity. The inactivation of the nitrogenase is explained as a result of rising oxygen tension, a consequence of a metabolic shift-down (reduced respiration) that occurs in organisms entering the stationary phase.

Full text

PDF
117

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURCHALL J. J., REICHELT E. C., WOLIN M. J. PURIFICATION AND PROPERTIES OF THE ASPARAGINE SYNTHETASE OF STREPTOCOCCUS BOVIS. J Biol Chem. 1964 Jun;239:1794–1798. [PubMed] [Google Scholar]
  2. Burns R. C., Holsten R. D., Hardy R. W. Isolation by crystallization of the Mo-Fe protein of Azotobacter nitrogenase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):90–99. doi: 10.1016/0006-291x(70)90762-x. [DOI] [PubMed] [Google Scholar]
  3. Dalton H., Postgate J. R. Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures. J Gen Microbiol. 1968 Dec;54(3):463–473. doi: 10.1099/00221287-54-3-463. [DOI] [PubMed] [Google Scholar]
  4. Drozd J., Postgate J. R. Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of Azotobacter chroococcum. J Gen Microbiol. 1970 Sep;63(1):63–73. doi: 10.1099/00221287-63-1-63. [DOI] [PubMed] [Google Scholar]
  5. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  6. Hitchins V. M., Sadoff H. L. Sequential metabolic events during encystment of Azobacter vinelandii. J Bacteriol. 1973 Mar;113(3):1273–1279. doi: 10.1128/jb.113.3.1273-1279.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holzer H. Regulation of enzymes by enzyme-catalyzed chemical modification. Adv Enzymol Relat Areas Mol Biol. 1969;32:297–326. doi: 10.1002/9780470122778.ch7. [DOI] [PubMed] [Google Scholar]
  8. JENSEN H. L. The Azotobacteriaceae. Bacteriol Rev. 1954 Dec;18(4):195–214. doi: 10.1128/br.18.4.195-214.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KOHLHAW G., DRAEGERT W., HOLZER H. PARALLEL-REPRESSION DER SYNTHESE VON GLUTAMIN-SYNTHETASE UND DPN-ABHAENGIGER GLUTAMAT-DEHYDROGENASE IN HEFE. Biochem Z. 1965 Feb 8;341:224–238. [PubMed] [Google Scholar]
  10. Kleiner D. Ammonium uptake by nitrogen fixing bacteria I. Azotobacter vinelandii. Arch Microbiol. 1975 Jun 22;104(2):163–169. doi: 10.1007/BF00447319. [DOI] [PubMed] [Google Scholar]
  11. Kleiner D., Chen C. H. Physical and chemical properties of the nitrogenase proteins form Azotobacter vinelandii. Arch Mikrobiol. 1974 Jun 7;98(1):93–100. doi: 10.1007/BF00425272. [DOI] [PubMed] [Google Scholar]
  12. Kleiner D. Fixation of atmospheric nitrogen by microorganisms. Angew Chem Int Ed Engl. 1975 Feb;14(2):80–86. doi: 10.1002/anie.197500801. [DOI] [PubMed] [Google Scholar]
  13. Kleiner D. Quantitative relations for the repression of nitrogenase synthesis in Azotobacter vinelandii by ammonia. Arch Microbiol. 1974;101(2):153–159. doi: 10.1007/BF00455935. [DOI] [PubMed] [Google Scholar]
  14. Lin L. P., Sadoff H. L. Encystment and polymer production by Azotobacter vinelandii in the presence of beta-hydroxybutyrate. J Bacteriol. 1968 Jun;95(6):2336–2343. doi: 10.1128/jb.95.6.2336-2343.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MAGEE W. E., BURRIS R. H. Oxidative activity and nitrogen fixation in cell-free preparations from Azotobacter vinelandii. J Bacteriol. 1956 Jun;71(6):635–643. doi: 10.1128/jb.71.6.635-643.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Meers J. L., Tempest D. W., Brown C. M. 'Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol. 1970 Dec;64(2):187–194. doi: 10.1099/00221287-64-2-187. [DOI] [PubMed] [Google Scholar]
  17. Nagatani H., Shimizu M., Valentine R. C. The mechanism of ammonia assimilation in nitrogen fixing Bacteria. Arch Mikrobiol. 1971;79(2):164–175. doi: 10.1007/BF00424923. [DOI] [PubMed] [Google Scholar]
  18. RAVEL J. M., NORTON S. J., HUMPHREYS J. S., SHIVE W. Asparagine biosynthesis in Lactobacillus arabinosus and its control by asparagine through enzyme inhibition and repression. J Biol Chem. 1962 Sep;237:2845–2849. [PubMed] [Google Scholar]
  19. Reed D. W., Toia R. E., Jr, Raveed D. Purification of azotophore membranes containing the nitrogenase from Azotobacter vinelandii. Biochem Biophys Res Commun. 1974 May 7;58(1):20–26. doi: 10.1016/0006-291x(74)90885-7. [DOI] [PubMed] [Google Scholar]
  20. Sadoff H. L., Berke E., Loperfido B. Physiological studies of encystment in Azotobacter vinelandii. J Bacteriol. 1971 Jan;105(1):185–189. doi: 10.1128/jb.105.1.185-189.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sadoff H. L. Encystment and germination in Azotobacter vinelandii. Bacteriol Rev. 1975 Dec;39(4):516–539. doi: 10.1128/br.39.4.516-539.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shah V. K., Davis L. C., Brill W. J. Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim Biophys Acta. 1972 Feb 28;256(2):498–511. doi: 10.1016/0005-2728(72)90078-3. [DOI] [PubMed] [Google Scholar]
  23. Shah V. K., Pate J. L., Brill W. J. Protection of nitrogenase in Azotobacter vinelandii. J Bacteriol. 1973 Jul;115(1):15–17. doi: 10.1128/jb.115.1.15-17.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stadtman E. R., Ginsburg A., Ciardi J. E., Yeh J., Hennig S. B., Shapiro B. M. Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylation and deadenylylation reactions. Adv Enzyme Regul. 1970;8:99–118. doi: 10.1016/0065-2571(70)90011-7. [DOI] [PubMed] [Google Scholar]
  25. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  26. Yates M. G. Control of respiration and nitrogen fixation by oxygen and adenine nucleotides in N2-grown Azotobacter chroococcum. J Gen Microbiol. 1970 Mar;60(3):393–401. doi: 10.1099/00221287-60-3-393. [DOI] [PubMed] [Google Scholar]
  27. Zumft W. G., Mortenson L. E. The nitrogen-fixing complex of bacteria. Biochim Biophys Acta. 1975 Mar 31;416(1):1–52. doi: 10.1016/0304-4173(75)90012-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES