Abstract
Tricarboyxlic acid cycle activity was examined in Neisseria gonorrhoeae CS-7. The catabolism of glucose in N. gonorrheae by a combination of the Entner-Doudoroff and pentose phosphate pathways resulted in the accumulation of acetate, which was not further catabolized until the glucose was depleted or growth became limiting. Radiorespirometric studies revealed that the label in the 1 position of acetate was converted to CO2 at twice the rate of the label in the 2 position, indicating the presence of a tricarboxylic acid cycle. Growth on glucose markedly reduced the levels of all tricarboxylic acid cycle enzymes except citrate synthase (EC 4.1.3.7). Extracts of glucose-grown cells contained detectable levels of all tricarboxylic acid cycle enzymes except aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.42), and a pyridine nucleotide-dependent malate dehydrogenase (EC 1.1.1.37). Extracts of cells capable of oxidizing acetate lacked only the pyridine nucleotide-dependent malate dehydrogenase. In lieu of this enzyem, a particulate pyridine nucleotide-independent malate oxidase (EC 1.1.3.3) was present. This enzyme required flavin adenine dinucleotide for activity and appeared to be associated with the electron transport chain. Radiorespirometric studies utilizing labeled glutamate demonstrated that a portion of the tricarboxylic acid cycle functioned during glucose catabolism. In spite of the presence of all tricarboxylic acid cycle enzymes, N. gonorrhoeae CS-7 was unable to grow in medium supplemented with cycle intermediates.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carpenter W. D., Beevers H. Distribution and Properties of Isocitritase in Plants. Plant Physiol. 1959 Jul;34(4):403–409. doi: 10.1104/pp.34.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho H. W., Eagon R. G. Factors affecting the pathways of glucose catabolism and the tricarboxylic acid cycle in Pseudomonas natriegens. J Bacteriol. 1967 Mar;93(3):866–873. doi: 10.1128/jb.93.3.866-873.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D. The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol. 1961;26:1–10. doi: 10.1101/sqb.1961.026.01.005. [DOI] [PubMed] [Google Scholar]
- Flechtner V. R., Hanson R. S. Regulation of the tricarboxylic acid cycle in bacteria. A comparison of citrate synthases from different bacteria. Biochim Biophys Acta. 1970 Nov 24;222(2):253–264. doi: 10.1016/0304-4165(70)90114-5. [DOI] [PubMed] [Google Scholar]
- Fortnagel P. The regulation of aconitase and isocitrate dehydrogenase in sporulation mutants of Bacillus subtilis. Biochim Biophys Acta. 1970 Nov 24;222(2):290–298. doi: 10.1016/0304-4165(70)90116-9. [DOI] [PubMed] [Google Scholar]
- Gibson J., Upper C. D., Gunsalus I. C. Succinyl coenzyme A synthetase from Escherichia coli. I. Purification and properties. J Biol Chem. 1967 May 25;242(10):2474–2477. [PubMed] [Google Scholar]
- Gray C. T., Wimpenny J. W., Mossman M. R. Regulation of metabolism in facultative bacteria. II. Effects of aerobiosis, anaerobiosis and nutrition on the formation of Krebs cycle enzymes in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):33–41. doi: 10.1016/0304-4165(66)90149-8. [DOI] [PubMed] [Google Scholar]
- Hansen E. J., Juni E. Two routes for synthesis of phosphoenolpyruvate from C4-dicarboxylic acids in Escherichia coli. Biochem Biophys Res Commun. 1974 Aug 19;59(4):1204–1210. doi: 10.1016/0006-291x(74)90442-2. [DOI] [PubMed] [Google Scholar]
- Hanson R. S., Cox D. P. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol. 1967 Jun;93(6):1777–1787. doi: 10.1128/jb.93.6.1777-1787.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill J. C. Effect of glutamate on exogenous citrate catabolism of Neisseria meningitidis and of other species of Neisseria. J Bacteriol. 1971 Jun;106(3):819–823. doi: 10.1128/jb.106.3.819-823.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holten E. Glutamate dehydrogenases in genus Neisseria. Acta Pathol Microbiol Scand B Microbiol Immunol. 1973 Feb;81(1):49–58. doi: 10.1111/j.1699-0463.1973.tb02186.x. [DOI] [PubMed] [Google Scholar]
- Holten E., Jyssum K. Activities of some enzymes concerning pyruvate metabolism in Neisseria. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Dec;82(6):843–848. doi: 10.1111/j.1699-0463.1974.tb02382.x. [DOI] [PubMed] [Google Scholar]
- Holten E. Pyridine nucleotide independent oxidation of L-malate in genus Neisseria. Acta Pathol Microbiol Scand B. 1976 Feb;84(1):17–21. doi: 10.1111/j.1699-0463.1976.tb01895.x. [DOI] [PubMed] [Google Scholar]
- Holten E. Radiorespirometric studies in genus Neisserai. I. The catabolism of glucose. Acta Pathol Microbiol Scand B. 1975 Aug;83(4):353–366. [PubMed] [Google Scholar]
- Holten E. Radiorespirometric studies in genus Neisseria. 2. The catabolism of glutamate and fumarate. Acta Pathol Microbiol Scand B. 1976 Feb;84(1):1–8. [PubMed] [Google Scholar]
- Holten E. Radiorespirometric studies in genus Neisseria. 3. The catabolism of pyruvate and acetate. Acta Pathol Microbiol Scand B. 1976 Feb;84(1):9–16. [PubMed] [Google Scholar]
- JYSSUM K., BORCHGREVINK B. The adaptive oxidation of L-glutamic acid in meningococci. Acta Pathol Microbiol Scand. 1960;48:361–366. doi: 10.1111/j.1699-0463.1960.tb04779.x. [DOI] [PubMed] [Google Scholar]
- JYSSUM K. Intermediate reactions of the tricarboxylic acid cycle in meningococci. Acta Pathol Microbiol Scand. 1960;48:121–132. doi: 10.1111/j.1699-0463.1960.tb04748.x. [DOI] [PubMed] [Google Scholar]
- Johnston K. H., Gotschlich E. C. Isolation and characterization of the outer membrane of Neisseria gonorrhoeae. J Bacteriol. 1974 Jul;119(1):250–257. doi: 10.1128/jb.119.1.250-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones M., King H. K. Particulate malate oxidation in strictly aerobic bacteria: The respiratory chain of Moraxella lwoffi. FEBS Lett. 1972 May 15;22(3):277–279. doi: 10.1016/0014-5793(72)80249-7. [DOI] [PubMed] [Google Scholar]
- Jurtshuk P., Bednarz A. J., Zey P., Denton C. H. L-malate oxidation by the electron transport fraction of Azotobacter vinelandii. J Bacteriol. 1969 Jun;98(3):1120–1127. doi: 10.1128/jb.98.3.1120-1127.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KELLOGG D. S., Jr, PEACOCK W. L., Jr, DEACON W. E., BROWN L., PIRKLE D. I. NEISSERIA GONORRHOEAE. I. VIRULENCE GENETICALLY LINKED TO CLONAL VARIATION. J Bacteriol. 1963 Jun;85:1274–1279. doi: 10.1128/jb.85.6.1274-1279.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- La Scolea L. J., Jr, Young F. E. Development of a defined minimal medium for the growth of Neisseria gonorrhoeae. Appl Microbiol. 1974 Jul;28(1):70–76. doi: 10.1128/am.28.1.70-76.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse S. A., Bartenstein L. Factors affecting autolysis of Neisseria gonorrhoeae. Proc Soc Exp Biol Med. 1974 Apr;145(4):1418–1421. doi: 10.3181/00379727-145-38025. [DOI] [PubMed] [Google Scholar]
- Morse S. A., Mah R. A., Dobrogosz W. J. Regulation of staphylococcal enterotoxin B. J Bacteriol. 1969 Apr;98(1):4–9. doi: 10.1128/jb.98.1.4-9.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse S. A., Stein S., Hines J. Glucose metabolism in Neisseria gonorrhoeae. J Bacteriol. 1974 Nov;120(2):702–714. doi: 10.1128/jb.120.2.702-714.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okinaka R. T., Dobrogosz W. J. Catabolite repression and pyruvate metabolism in Escherichia coli. J Bacteriol. 1967 May;93(5):1644–1650. doi: 10.1128/jb.93.5.1644-1650.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TONHAZY N. E., PELCZAR M. J., Jr Oxidation of amino acids and compounds associated with the tricarboxylic acid cycle by Neisseria gonorrhoeae. J Bacteriol. 1953 Apr;65(4):368–377. doi: 10.1128/jb.65.4.368-377.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weitzman P. D., Dunmore P. Citrate synthases: allosteric regulation and molecular size. Biochim Biophys Acta. 1969 Jan 7;171(1):198–200. doi: 10.1016/0005-2744(69)90122-3. [DOI] [PubMed] [Google Scholar]
- Weitzman P. D., Jones D. The mode of regulation of bacterial citrate synthase as a taxonomic tool. J Gen Microbiol. 1975 Jul;89(1):187–189. doi: 10.1099/00221287-89-1-187. [DOI] [PubMed] [Google Scholar]
- Winter D. B., Morse S. A. Physiology and metabolism of pathogenic Neisseria: partial characterization of the respiratory chain of Neisseria gonorrhoeae. J Bacteriol. 1975 Aug;123(2):631–636. doi: 10.1128/jb.123.2.631-636.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]