Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Oct;128(1):302–308. doi: 10.1128/jb.128.1.302-308.1976

Growth response of Escherichia coli to nutritional shift-up: immediate division stimulation in slow-growing cells.

J B Sloan, J E Urban
PMCID: PMC232856  PMID: 789337

Abstract

When Escherichia coli 15T- cells growing exponentially at 70- to 80-min doubling times are subjected to a nutritional shift-up via glucose addition, cell division continues at the preshift rate for about 70 min (rate maintenance). The same cells growing at doubling times of 120 min or longer, however, begin to divide at a new faster rate immediately upon glucose addition. In both the rate maintenance and immediate division situations, cell mass, as measured by optical density (OD), begins to increase immediately upon shift-up. Consequently, the OD/cell pattern differs in the two growth-rate transitions. During rate maintenance, the OD/cell ratio increases dramatically for 60 to 70 min, and then slows appreciably and approaches the OD/cell characteristic of the new medium. During immediate division situations, the OD/cell increases only slightly for the first 180 +/- min; then the rate of increase accelerates but does not stop at the OD/cell characteristic of the new medium. Immediate division upon nutritional shift-up apparently depends upon initial doubling times in excess of 115 to 120 min and provision of a readily metabolized carbon source supporting doubling times of about 40 min. Similar immediate division occurs in E. coli B/r and K-12.

Full text

PDF
302

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird R. E., Lark K. G. Chromosome replication in Escherichia coli 15T- at different growth rates: rate of replication of the chromosome and the rate of formation of small pieces. J Mol Biol. 1970 Apr 28;49(2):343–366. doi: 10.1016/0022-2836(70)90249-4. [DOI] [PubMed] [Google Scholar]
  2. Bird R., Lark K. G. Initiation and termination of DNA replication after amino acid starvation of E. coli 15T-. Cold Spring Harb Symp Quant Biol. 1968;33:799–808. doi: 10.1101/sqb.1968.033.01.092. [DOI] [PubMed] [Google Scholar]
  3. Bremer H., Dennis P. P. Transition period following a nutritional shift-up in the bacterium Escherichia coli B/r: stable RNA and protein synthesis. J Theor Biol. 1975 Aug;52(2):365–382. doi: 10.1016/0022-5193(75)90007-7. [DOI] [PubMed] [Google Scholar]
  4. Chai N. C., Lark K. G. Cytological studies of deoxyribonucleic acid replication in Escherichia coli 15T-: replication at slow growth rates and after a shift-up into rich medium. J Bacteriol. 1970 Oct;104(1):401–409. doi: 10.1128/jb.104.1.401-409.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chandler M., Bird R. E., Caro L. The replication time of the Escherichia coli K12 chromosome as a function of cell doubling time. J Mol Biol. 1975 May 5;94(1):127–132. doi: 10.1016/0022-2836(75)90410-6. [DOI] [PubMed] [Google Scholar]
  6. Cooper S. Cell division and DNA replication following a shift to a richer medium. J Mol Biol. 1969 Jul 14;43(1):1–11. doi: 10.1016/0022-2836(69)90074-6. [DOI] [PubMed] [Google Scholar]
  7. Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
  8. Cooper S., Ruettinger T. Replication of deoxyribonucleic acid during the division cycle of Salmonella typhimurium. J Bacteriol. 1973 Jun;114(3):966–973. doi: 10.1128/jb.114.3.966-973.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Donachie W. D., Begg K. J. Growth of the bacterial cell. Nature. 1970 Sep 19;227(5264):1220–1224. doi: 10.1038/2271220a0. [DOI] [PubMed] [Google Scholar]
  10. Donachie W. D. Relationship between cell size and time of initiation of DNA replication. Nature. 1968 Sep 7;219(5158):1077–1079. doi: 10.1038/2191077a0. [DOI] [PubMed] [Google Scholar]
  11. Gudas L. J., Pardee A. B. Deoxyribonucleic acid synthesis during the division cycle of Escherichia coli: a comparison of strains B-r, K-12, 15, and 15T- under conditions of slow growth. J Bacteriol. 1974 Mar;117(3):1216–1223. doi: 10.1128/jb.117.3.1216-1223.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helmstetter C. E. DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):507–518. doi: 10.1016/0022-2836(68)90424-5. [DOI] [PubMed] [Google Scholar]
  13. Helmstetter C. E. Initiation of chromosome replication in Escherichia coli. II. Analysis of the control mechanism. J Mol Biol. 1974 Mar 25;84(1):21–36. doi: 10.1016/0022-2836(74)90210-1. [DOI] [PubMed] [Google Scholar]
  14. Helmstetter C., Cooper S., Pierucci O., Revelas E. On the bacterial life sequence. Cold Spring Harb Symp Quant Biol. 1968;33:809–822. doi: 10.1101/sqb.1968.033.01.093. [DOI] [PubMed] [Google Scholar]
  15. Jacobson M. K., Lark K. G. DNA replication in Escherichia coli: evidence for two classes of small deoxyribonucleotide chains. J Mol Biol. 1973 Feb 5;73(4):371–396. doi: 10.1016/0022-2836(73)90088-0. [DOI] [PubMed] [Google Scholar]
  16. KELLENBERGER E., LARK K. G., BOLLE A. Amino acid dependent control of DNA synthesis in bacteria and vegetative phage. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1860–1868. doi: 10.1073/pnas.48.10.1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KJELDGAARD N. O., MAALOE O., SCHAECHTER M. The transition between different physiological states during balanced growth of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):607–616. doi: 10.1099/00221287-19-3-607. [DOI] [PubMed] [Google Scholar]
  18. Kubitschek H. E. Estimation of the D period from residual division after exposure of exponential phase bacteria to chloramphenicol. Mol Gen Genet. 1974;135(2):123–130. doi: 10.1007/BF00264780. [DOI] [PubMed] [Google Scholar]
  19. Kubitschek H. E., Freedman M. L. Chromosome replication and the division cycle of Escherichia coli B-r. J Bacteriol. 1971 Jul;107(1):95–99. doi: 10.1128/jb.107.1.95-99.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LARK K. G., REPKO T., HOFFMAN E. J. THE EFFECT OF AMINO ACID DEPRIVATION ON SUBSEQUENT DEOXYRIBONUCLEIC ACID REPLICATION. Biochim Biophys Acta. 1963 Sep 17;76:9–24. [PubMed] [Google Scholar]
  21. Lark C. Regulation of deoxyribonucleic acid synthesis in Escherichia coli: dependence on growth rates. Biochim Biophys Acta. 1966 Jun 22;119(3):517–525. doi: 10.1016/0005-2787(66)90128-6. [DOI] [PubMed] [Google Scholar]
  22. Pierucci O. Chromosome replication and cell division in Escherichia coli at various temperatures of growth. J Bacteriol. 1972 Feb;109(2):848–854. doi: 10.1128/jb.109.2.848-854.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rodriguez R. L., Davern C. I. Direction of deoxyribonucleic acid replication in Escherichia coli under various conditions of cell growth. J Bacteriol. 1976 Jan;125(1):346–352. doi: 10.1128/jb.125.1.346-352.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SCHAECHTER M., MAALOE O., KJELDGAARD N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):592–606. doi: 10.1099/00221287-19-3-592. [DOI] [PubMed] [Google Scholar]
  25. Urban J. E., Lark K. G. DNA replication in Escherichia coli 15T- growing at 20 degrees C. J Mol Biol. 1971 Jun 28;58(3):711–724. doi: 10.1016/0022-2836(71)90035-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES