Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Oct;128(1):390–393. doi: 10.1128/jb.128.1.390-393.1976

Cysteine and methionine content of the Escherichia coli ribonucleic acid polymerase subunits.

R R Burgess, C Gross, F Engbaek
PMCID: PMC232866  PMID: 789343

Abstract

We describe a procedure that allows cysteine and methionine content to be determined on microgram amounts of partially purified protein. The only requirements are that the protein can be obtained as a pure band after electrophoresis on a polyacrylamide gel and that some data on amino acid content be available. This method involves double labeling by growing bacterial cells with [3H]leucine and [35S]SO4 and determining the ratio of these radioisotopes incorporated into the ribonucleic acid polymerase subunits. The relative specific activities of [3H]leucine and [35S]cysteine and methionine are determined from the ratio of these isotopes incorporated into beta-galactosidase, the leucine, cysteine, and methionine contents of which are known. We have used this procedure to determine the sulfur content of the subunits of Escherichia coli ribonucleic acid polymerase. These new data are necessary to quantitate the rates of synthesis of these subunits by in vivo labeling with [35S]SO4.

Full text

PDF
390

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgess R. R. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6168–6176. [PubMed] [Google Scholar]
  2. Engbaek F., Gross C., Burgess R. R. Biosynthesis of Escherichia coli RNA polymerase subunits upon release of rifampicin inhibition. Mol Gen Genet. 1976 Feb 2;143(3):297–299. doi: 10.1007/BF00269406. [DOI] [PubMed] [Google Scholar]
  3. Fujiki H., Zurek G. The subunits of DNA-dependent RNA polymerase from E. coli: I. Amino acid analysis and primary structure of the N-terminal regions. FEBS Lett. 1975 Jul 15;55(1):242–244. doi: 10.1016/0014-5793(75)81001-5. [DOI] [PubMed] [Google Scholar]
  4. Gross C., Engbaek F., Flammang T., Burgess R. Rapid micromethod for the purification of Escherichia coli ribonucleic acid polymerase and the preparation of bacterial extracts active in ribonucleic acid synthesis. J Bacteriol. 1976 Oct;128(1):382–389. doi: 10.1128/jb.128.1.382-389.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harding J. D., Beychok S. Sulfhydryl reactivity of E. coli DNA dependent RNA polymerase. Biochem Biophys Res Commun. 1973 Apr 2;51(3):711–717. doi: 10.1016/0006-291x(73)91373-9. [DOI] [PubMed] [Google Scholar]
  6. Krakow J. S. On the role of sulfhydryl groups in the structure and function of the Azotobacter vinelandii RNA polymerase. Biochemistry. 1975 Oct 7;14(20):4522–4527. doi: 10.1021/bi00691a029. [DOI] [PubMed] [Google Scholar]
  7. Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nicholson B. H., King A. M. Thiol function and tertiary structure of RNA polymerase of Escherichia coli. Eur J Biochem. 1973 Sep 3;37(3):575–584. doi: 10.1111/j.1432-1033.1973.tb03021.x. [DOI] [PubMed] [Google Scholar]
  9. Sekiguchi M., Iida S. Mutants of Escherichia coli permeable to actinomycin. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2315–2320. doi: 10.1073/pnas.58.6.2315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yarbrough L. R., Wu C. W. Role of sulfhydryl residues of Escherichia coli ribonucleic acid polymerase in template recognition and specific initiation. J Biol Chem. 1974 Jul 10;249(13):4079–4085. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES