Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jul;127(1):1–6. doi: 10.1128/jb.127.1.1-6.1976

Utilization of exogenous pyrimidines as a source of nitrogen by cells of the yeast Rhodotorula glutinis.

O A Milstein, M L Bekker
PMCID: PMC233025  PMID: 945262

Abstract

Uptake and intracellular transformation of pyrimidines supplying cells of the yeast Rhodotorula glutinis with nitrogen have been studied. The amine nitrogen of cytosine was found to be the easiest to utilize. The presence in the medium of inorganic ammonia along with cytosine had a slight effect on cytosine deaminase (EC 3.5.4.1) activity. The uracil produced entered into the nutrient medium with no fission break of the pyridmidine ring. In the absence of any other source of nitrogen, the cells of the yeast R. glutinis utilized nitrogen of the pyrimidine ring of oxypyrimidines. Catabolism of uracil followed the reductive pattern, with release of carbon dioxide; this was accompanied by synthesis of the key enzyme of pyrimidine catabolism, dihydrouracil dehydrogenase (EC 1.3.1.1), whose activity rose 10-fold. With thymidne as the sole source of nitrogen, the lag-phase growth of the yeast cells was maximum. Catabolism of the pyrimidine ring of thymine was possibly preceded by its transformation into uracil. With no source of nitrogen easily utilized, the uridine 5'-monophosphate content in the generally acid-soluble pool rose. Our discussion of the regulation of catabolism of exogenous pyrimidine bases by the yeast R. glutinis takes into account the fact that transformations of pyrimidine bases are determined by how easily the cells can use a particular base as a source of nitrogen.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABBOTT M. T., KADNER R. J., FINK R. M. CONVERSION OF THYMINE TO 5-HYDROXYMETHYLURACIL IN A CELL-FREE SYSTEM. J Biol Chem. 1964 Jan;239:156–159. [PubMed] [Google Scholar]
  2. Abbott M. T., Dragila T. A., McCroskey R. P. The formation of 5-formyluracil by cell-free preparations from Neurospora crassa. Biochim Biophys Acta. 1968 Nov 20;169(1):1–6. doi: 10.1016/0005-2787(68)90002-6. [DOI] [PubMed] [Google Scholar]
  3. Abbott M. T., Schandl E. K., Lee R. F., Parker T. S., Midgett R. J. Cofactor requirements of thymine 7-hydroxylase. Biochim Biophys Acta. 1967 Mar 15;132(2):525–528. doi: 10.1016/0005-2744(67)90177-5. [DOI] [PubMed] [Google Scholar]
  4. Ban J., Vitale L., Kos E. Thymine and uracil catabolism in Escherichia coli. J Gen Microbiol. 1972 Nov;73(2):267–272. doi: 10.1099/00221287-73-2-267. [DOI] [PubMed] [Google Scholar]
  5. Beck C. F., Ingraham J. L., Neuhard J., Thomassen E. Metabolism of pyrimidines and pyrimidine nucleosides by Salmonella typhimurium. J Bacteriol. 1972 Apr;110(1):219–228. doi: 10.1128/jb.110.1.219-228.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CAMPBELL L. L., Jr Reductive degradation of pyrimidines. I. The isolation and characterization of a uracil fermenting bacterium, Clostridium uracilicum nov. spec. J Bacteriol. 1957 Feb;73(2):220–224. doi: 10.1128/jb.73.2.220-224.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CAMPBELL L. L., Jr Reductive degradation of pyrimidines. II. Mechanism of uracil degradation by Clostridium uracilicum. J Bacteriol. 1957 Feb;73(2):225–229. doi: 10.1128/jb.73.2.225-229.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DI CARLO F. J., SCHULTZ A. S., KENT A. M. On the mechanism of pyrimidine metabolism by yeasts. J Biol Chem. 1952 Nov;199(1):333–343. [PubMed] [Google Scholar]
  9. Di CARLO F. J., SCHULTZ A. S., McMANUS D. K. The assimilation of nucleic acid derivatives and related compounds by yeasts. J Biol Chem. 1951 Mar;189(1):151–157. [PubMed] [Google Scholar]
  10. FINK K., CLINE R. E., HENDERSON R. B., FINK R. M. Metabolism of thymine (methyl-C14 or -2-C14) by rat liver in vitro. J Biol Chem. 1956 Jul;221(1):425–433. [PubMed] [Google Scholar]
  11. FINK R. M., FINK K. Utilization of radiocarbon from thymidine and other precursors of ribonucleic acid in Neurospora crassa. J Biol Chem. 1962 Jul;237:2289–2290. [PubMed] [Google Scholar]
  12. FINK R. M., MCGAUGHEY C., CLINE R. E., FINK K. Metabolism of intermediate pyrimidine reduction products in vitro. J Biol Chem. 1956 Jan;218(1):1–7. [PubMed] [Google Scholar]
  13. GILBERT D. A., YEMM E. W. Soluble nucleotides and nucleotide-amino-acid compounds of yeast. Nature. 1958 Dec 20;182(4651):1745–1746. doi: 10.1038/1821745b0. [DOI] [PubMed] [Google Scholar]
  14. Grenson M. The utilization of exogenous pyrimidines and the recycling of uridine-5'-phosphate derivatives in Saccharomyces cerevisiae, as studied by means of mutants affected in pyrimidine uptake and metabolism. Eur J Biochem. 1969 Dec;11(2):249–260. doi: 10.1111/j.1432-1033.1969.tb00767.x. [DOI] [PubMed] [Google Scholar]
  15. HAYAISHI O., KORNBERG A. Metabolism of cytosine, thymine, uracil, and barbituric acid by bacterial enzymes. J Biol Chem. 1952 May;197(2):717–732. [PubMed] [Google Scholar]
  16. Ipata P. L., Marmocchi F., Magni G., Felicioli R., Polidoro G. Baker's yeast cytosine deaminase. Some enzymic properties and allosteric inhibition by nucleosides and nucleotides. Biochemistry. 1971 Nov;10(23):4270–4276. doi: 10.1021/bi00799a018. [DOI] [PubMed] [Google Scholar]
  17. Jones R. W., Wild D. G. Regulation of uptake of purines, pyrimidines and amino acids by Candida utilis. Biochem J. 1973 Jun;134(2):617–627. doi: 10.1042/bj1340617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LARA F. J. S. On the decomposition of pyrimidines by bacteria. I. Studies by means of the technique of simultaneous adaptation. J Bacteriol. 1952 Aug;64(2):271–277. doi: 10.1128/jb.64.2.271-277.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LaRue T. A., Spencer J. F. The utilization of purines and pyrimidines by yeasts. Can J Microbiol. 1968 Jan;14(1):79–86. doi: 10.1139/m68-012. [DOI] [PubMed] [Google Scholar]
  20. Lacroute F. Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1968 Mar;95(3):824–832. doi: 10.1128/jb.95.3.824-832.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCroskey R. P., Griswold W. R., Sokoloff R. L., Sevier E. D., Lin S., Liu K., Shaffer P. M., Palmatier R. D., Parker T. S., Abbott M. T. Studies pertaining to the purification and properties of thymine 7-hydroxylase. Biochim Biophys Acta. 1971 Feb 10;227(2):264–277. doi: 10.1016/0005-2744(71)90059-3. [DOI] [PubMed] [Google Scholar]
  22. O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palmatier R. D., McCroskey R. P., Abbott M. T. The enzymatic conversion of uracil 5-carboxylic acid to uracil and carbon dioxide. J Biol Chem. 1970 Dec 25;245(24):6706–6710. [PubMed] [Google Scholar]
  24. Reader V. The Relation of the Growth of Certain Micro-organisms to the Composition of the Medium: The Synthetic Culture Medium. Biochem J. 1927;21(4):901–907. doi: 10.1042/bj0210901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vilks S. R., Vitols M. Ia. Usvoenie i katabolizm 5-metiltsitozina i timina drozhzhami Rhodotorula glutinis (Fres.) Harrison. Mikrobiologiia. 1973 Jul-Aug;42(4):576–582. [PubMed] [Google Scholar]
  26. WANG T. P., LAMPEN J. O. Metabolism of pyrimidines by a soil bacterium. J Biol Chem. 1952 Feb;194(2):775–783. [PubMed] [Google Scholar]
  27. Watanabe M. S., McCroskey R. P., Abbott M. T. The enzymatic conversion of 5-formyluracil to uracil 5-carboxylic acid. J Biol Chem. 1970 Apr 25;245(8):2023–2026. [PubMed] [Google Scholar]
  28. Williams L. G., Mitchell H. K. Mutants affecting thymidine metabolism in Neurospora crassa. J Bacteriol. 1969 Oct;100(1):383–389. doi: 10.1128/jb.100.1.383-389.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES