Abstract
Mutants of Escherichia coli tolerant to the ghosts of T-even phages (T2, T4, and T6) have been isolated from a strain supersensitive to T6 phage. First, T6 supersensitive mutants were isolated from mutagenized E. coli W2252 by replica plating to T6 phage-overlaid agar. One of them, strain NM101, was mutagenized again, grown, and then plated with a high multiplicity of T4 and T6 ghosts. Surviving cells were checked for tolerance to ghosts and adsorption of phages. One such ghost-tolerant mutant, strain GT29, was tolerant to ghosts of both T4 and T6 phages and sensitive to T2 ghosts. This mutant was also sensitive to ethylenediaminetetraacetic acid and penicillin G and intermediately sensitive to acriflavine, sodium dodecyl sulfate, sodium deoxycholate, actinomycin D, and lysozyme. Another mutant, strain GT62, was tolerant not only to T4 and T6 ghosts but also to T2 ghosts. It was sensitive to sodium dodecyl sulfate, sodium deoxycholate, penicillin G, acridine orange, actinomycin D, phenethyl alcohol, and novobiocin and intermediately sensitive to acriflavine and lysozyme. Spontaneous revertants of strain GT62 were isolated with a frequency of 2.7 X 10(-9). It is suggested that ghosts attack host bacteria indirectly through the cell surface by a mechanism similar to the transmission hypothesis that was originally adopted by Nomura (1967) to explain the mechanism of the action of colicins, and that our ghost-tolerant mutants presumably have defects in the cell surface.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BONIFAS V., KELLENBERGER E. Etude de l'action des membranes du bactériophage T2 sur Escherichia coli. Biochim Biophys Acta. 1955 Mar;16(3):330–338. doi: 10.1016/0006-3002(55)90234-1. [DOI] [PubMed] [Google Scholar]
- Bayer M. E. Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli. J Virol. 1968 Apr;2(4):346–356. doi: 10.1128/jvi.2.4.346-356.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duckworth D. H. Biological activity of bacteriophage ghosts and "take-over" of host functions by bacteriophage. Bacteriol Rev. 1970 Sep;34(3):344–363. doi: 10.1128/br.34.3.344-363.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duckworth D. H. Role of lysozyme in the biological activity of bacteriophage ghosts. J Virol. 1969 Jan;3(1):92–94. doi: 10.1128/jvi.3.1.92-94.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duckworth D. H. The metabolism of T4 phage ghost-infected cells. I. Macromolecular synthesis and ransport of nucleic acid and protein precursors. Virology. 1970 Mar;40(3):673–684. doi: 10.1016/0042-6822(70)90212-6. [DOI] [PubMed] [Google Scholar]
- Duckworth D. H., Winkler H. H. Metabolism of T4 bacteriophage ghost-infected cells. II. Do ghosts cause a generalized permeability change? J Virol. 1972 Jun;9(6):917–922. doi: 10.1128/jvi.9.6.917-922.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRENCH R. C., SIMINOVITCH L. The action of T2 bacteriophage ghosts on Escherichia coli B. Can J Microbiol. 1955 Dec;1(9):757–774. doi: 10.1139/m55-090. [DOI] [PubMed] [Google Scholar]
- Fabricant R., Kennell D. Inhibition of host protein synthesis during infection of Escherichi coli by bacteriophage T4. 3. Inhibition by ghosts. J Virol. 1970 Dec;6(6):772–781. doi: 10.1128/jvi.6.6.772-781.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERRIOTT R. M., BARLOW J. L. The protein coats or ghosts of coli phage T2. II. The biological functions. J Gen Physiol. 1957 Nov 20;41(2):307–331. doi: 10.1085/jgp.41.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEHMAN I. R., HERRIOTT R. M. The protein coats or ghosts or coliphage T2. III. Metabolic studies of Escherichia coli B infected with T2 bacteriophage ghosts. J Gen Physiol. 1958 May 20;41(5):1067–1082. doi: 10.1085/jgp.41.5.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindberg A. A. Bacteriophage receptors. Annu Rev Microbiol. 1973;27:205–241. doi: 10.1146/annurev.mi.27.100173.001225. [DOI] [PubMed] [Google Scholar]
- Maten M. V., Nelson E. T., Buller C. S. Does phospholipase have a role in killing and sodium dodecyl sulfate lysis of T4 ghost-infected Escherichia coli? J Virol. 1974 Dec;14(6):1617–1619. doi: 10.1128/jvi.14.6.1617-1619.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura M. Colicins and related bacteriocins. Annu Rev Microbiol. 1967;21:257–284. doi: 10.1146/annurev.mi.21.100167.001353. [DOI] [PubMed] [Google Scholar]
- Okamoto K. Role of T4 phage-directed protein in the establishment of resistance to T4 ghosts. Virology. 1973 Dec;56(2):595–603. doi: 10.1016/0042-6822(73)90060-3. [DOI] [PubMed] [Google Scholar]
- Shapira A., Giberman E., Kohn A. Recoverable potassium fluxes variations following adsorption of T4 phage and their ghosts on Escherichia coli B. J Gen Virol. 1974 May;23(2):159–171. doi: 10.1099/0022-1317-23-2-159. [DOI] [PubMed] [Google Scholar]
- Winkler H. H., Duckworth D. H. Metabolism of T4 bacteriophage ghost-infected cells: effect of bacteriophage and ghosts on the uptake of carbohydrates in Escherichia coli B. J Bacteriol. 1971 Jul;107(1):259–267. doi: 10.1128/jb.107.1.259-267.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]