Abstract
The oxygen and nutritional requirements for acetylene reduction by Rhizobium japonicum and Rhizobium sp. in liquid culture are described. The optimal oxygen concentration was about 0.1% in the gas phase, which is lower than that of any other known aerobic nitrogen-fixing microorganism. these organisms are also unique in that nitrogenase synthesis is not repressed in the presence of ammonium chloride under certain cultural conditions, in contrast to other wild-type bacteria.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Keister D. L. Acetylene reduction by pure cultures of Rhizobia. J Bacteriol. 1975 Sep;123(3):1265–1268. doi: 10.1128/jb.123.3.1265-1268.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy I. R. Kinetics of acetylene and CN- reduction by the N2-fixing system of Rhizobium lupini. Biochim Biophys Acta. 1970 Oct 27;222(1):135–144. doi: 10.1016/0304-4165(70)90358-2. [DOI] [PubMed] [Google Scholar]
- PARKER C. A. Effect of oxygen on the fixation of nitrogen by Azotobacter. Nature. 1954 Apr 24;173(4408):780–781. doi: 10.1038/173780b0. [DOI] [PubMed] [Google Scholar]
- Phillips D. A. Factors affecting the reduction of acetylene by Rhizobium-soybean cell associations in vitro. Plant Physiol. 1974 Jan;53(1):67–72. doi: 10.1104/pp.53.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streicher S. L., Gurney E. G., Valentine R. C. The nitrogen fixation genes. Nature. 1972 Oct 27;239(5374):495–499. doi: 10.1038/239495a0. [DOI] [PubMed] [Google Scholar]
- Tjepkema J., Evans H. J. Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochem Biophys Res Commun. 1975 Jul 22;65(2):625–628. doi: 10.1016/s0006-291x(75)80192-6. [DOI] [PubMed] [Google Scholar]