Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jul;127(1):179–183. doi: 10.1128/jb.127.1.179-183.1976

Natural paucity of anaplerotic enzymes: basis for dependence of Arthrobacter pyridinolis on L-malate for growth.

T A Krulwich, B I Sharon, L S Perrin
PMCID: PMC233049  PMID: 931946

Abstract

Previous work has shown that in Arthrobacter pyridinolis the transport systems for glucose and several amino acids are respiration coupled, with malate oxidation occurring concomitantly with transport. The requisite malate has to be supplied exogenously, so that growth on glucose or certain amino acids only occurs if malate is also present in the medium. These and other data suggested that A. pyridinolis might be deficient in anaplerotic enzymes, which maintain intracellular levels of dicarboxylic acids. A comparative study was undertaken of anaplerotic enzymes in A. pyridinolis and in a closely related species, A. crystallopoietes, which has respiration-coupled transport of glucose but can grow on glucose without added malate. The paucity of anaplerotic enzymes in A. pyridinolis and its probable relationship to the malate requirement for growth on glucose were documented as follows: (i) A. crystallopoietes, but not A. pyridinolis, possesses phosphoenolpyruvate carboxylase activity, and neither species contains pyruvate carboxylase; (ii) both A. pyridinolis and A. crystallopoietes possess glyoxylate pathways that are induced by acetate but not by hexoses; (iii) isocitrate lyase-deficient mutants of A. pyridinolis fail to grow on rhamnose and fructose as well as acetate; and (iv) mutants of A. crystallopoietes that require malate for growth on glucose are deficient in phosphoenolpyruvate carboxylase.

Full text

PDF
179

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANOVAS J. L., KORNBERG H. L. FINE CONTROL OF PHOSPHOPYRUVATE CARBOXYLASE ACTIVITY IN ESCHERICHIA COLI. Biochim Biophys Acta. 1965 Jan;96:169–172. doi: 10.1016/0005-2787(65)90624-6. [DOI] [PubMed] [Google Scholar]
  2. Kornberg H. L. The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966 Apr;99(1):1–11. doi: 10.1042/bj0990001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Krulwich T. A., Ensign J. C. Alteration of glucose metabolism of Arthrobacter crystallopoietes by compounds which induce sphere to rod morphogenesis. J Bacteriol. 1969 Feb;97(2):526–534. doi: 10.1128/jb.97.2.526-534.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Krulwich T. A., Sobel M. E., Wolfson E. B. Alternate pathways of D-fructose transport and metabolism in Arthrobacter pyridinolis. Biochem Biophys Res Commun. 1973 Jul 2;53(1):258–263. doi: 10.1016/0006-291x(73)91428-9. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Levinson S. L., Krulwich T. A. Alternate pathways of L-rhamnose transport in Arthrobacter pyridinolis. Arch Biochem Biophys. 1974 Feb;160(2):445–450. doi: 10.1016/0003-9861(74)90419-6. [DOI] [PubMed] [Google Scholar]
  7. London J., Meyer E. Y. Malate utilization by a group D Streptococcus: physiological properties and purification of an inducible malic enzyme. J Bacteriol. 1969 May;98(2):705–711. doi: 10.1128/jb.98.2.705-711.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McFadden B. A., Howes W. V. OXIDATIVE METABOLISM AND THE GLYOXYLATE CYCLE IN PSEUDOMONAS INDIGOFERA. J Bacteriol. 1962 Jul;84(1):72–76. doi: 10.1128/jb.84.1.72-76.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sanwal B. D., Wright J. A., Smando R. Allosteric control of the activity of malic enzyme in Escherichia coli. Biochem Biophys Res Commun. 1968 May 23;31(4):623–627. doi: 10.1016/0006-291x(68)90524-x. [DOI] [PubMed] [Google Scholar]
  10. Sobel M. E., Wolfson E. B., Krulwich T. A. Abolition of crypticity of Arthrobacter pyridinolis toward glucose and alpha-glucosides by tricarboxylic acid cycle intermediates. J Bacteriol. 1973 Oct;116(1):271–278. doi: 10.1128/jb.116.1.271-278.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. THEODORE T. S., ENGLESBERG E. MUTANT OF SALMONELLA TYPHIMURIUM DEFICIENT IN THE CARBON DIOXIDE-FIXING ENZYME PHOSPHOENOLPYRUVIC CARBOXYLASE. J Bacteriol. 1964 Oct;88:946–955. doi: 10.1128/jb.88.4.946-955.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Vinopal R. T., Fraenkel D. G. Phenotypic suppression of phosphofructokinase mutations in Escherichia coli by constitutive expression of the glyoxylate shunt. J Bacteriol. 1974 Jun;118(3):1090–1100. doi: 10.1128/jb.118.3.1090-1100.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wolfson E. B., Sobel M. E., Blanco R., Krulwich T. A. Pathways of D-fructose transport in Arthrobacter pyridinolis. Arch Biochem Biophys. 1974 Feb;160(2):440–444. doi: 10.1016/0003-9861(74)90418-4. [DOI] [PubMed] [Google Scholar]
  14. Wolfson P. J., Krulwich T. A. Inhibition of isocitrate lyase: the basis for inhibition of growth of two Arthrobacter species by pyruvate. J Bacteriol. 1972 Oct;112(1):356–364. doi: 10.1128/jb.112.1.356-364.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES