Abstract
A reversal in the relative amounts of the two major species of tyrosine transfer ribonucleic acid (tRNATyr) (I and II) has been previously observed by others during the development of Bacillus subtilis. These species have been purified by benzoylated diethylaminoethyl-cellulose chromatography and were shown to differ by the modification of an adenosine residue (species I contains i6A and species II ms2i6A). As suggested by competitive hybridization assays, they might possess the same nucleotide sequence. A tRNATyr species lacking isopentenyl and methylthio moieties was not detected. The structural difference between species I and II was shown to be important for ribosome binding but not for charging. The extent of alteration during growth was studied in parallel with physiological events. Like sporulation, tRNATyr change is iron dependent. Moreover, when sporulation is prevented by an excess of glucose, the tRNATyr change is delayed as is the synthesis of enzymatic systems required for the onset of sporulation. tRNATyr change also demands unceasing protein synthesis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arceneaux J. L., Sueoka N. Two species of Bacillus subtilis tyrosine transfer ribonucleic acid. Biological properties and alteration in their relative amounts during growth. J Biol Chem. 1969 Nov 10;244(21):5959–5966. [PubMed] [Google Scholar]
- Chuang R., Yamakawa T., Doi R. H. Identification of two lysine tRNA cistrons in Bacillus subtilis by hybridization of lysyl-tRNA with DNA. Biochem Biophys Res Commun. 1971 May 21;43(4):710–716. doi: 10.1016/0006-291x(71)90673-5. [DOI] [PubMed] [Google Scholar]
- Freese E., Klofat W., Galliers E. Commitment to sporulation and induction of glucose-phosphoenolpyruvate-transferase. Biochim Biophys Acta. 1970 Nov 24;222(2):265–289. doi: 10.1016/0304-4165(70)90115-7. [DOI] [PubMed] [Google Scholar]
- Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
- Henckes G., Panayotakis O., Heyman T. Isoaccepting species of serine tRNA coded by bacteriophage T5sto. J Virol. 1976 Feb;17(2):316–325. doi: 10.1128/jvi.17.2.316-325.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ionesco H., Schaeffer P. Localisation chromosomique de certains mutants asporogènes de Bacillus subtilis Marburg. Ann Inst Pasteur (Paris) 1968 Jan;114(1):1–9. [PubMed] [Google Scholar]
- Isham K. R., Stulberg M. P. Modified nucleosides in undermethylated phenylalanine transfer RNA from Escherichia coli. Biochim Biophys Acta. 1974 Mar 8;340(2):177–182. doi: 10.1016/0005-2787(74)90110-5. [DOI] [PubMed] [Google Scholar]
- Juarez H., Skjold A. C., Hedgcoth C. Precursor relationship of phenylalanine transfer ribonucleic acid from Escherichia coli treated with chloramphenicol or starved for iron, methionine, or cysteine. J Bacteriol. 1975 Jan;121(1):44–54. doi: 10.1128/jb.121.1.44-54.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
- Kaneko I., Doi R. H. Alteration of valyl-sRNA during sporulation of bacillus subtilis. Proc Natl Acad Sci U S A. 1966 Mar;55(3):564–571. doi: 10.1073/pnas.55.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keith G., Rogg H., Dirheimer G., Menichi B., Heyham T. Post-transcriptional modification of tyrosine tRNA as a function of growth in Bacillus subtilis. FEBS Lett. 1976 Jan 15;61(2):120–123. doi: 10.1016/0014-5793(76)81017-4. [DOI] [PubMed] [Google Scholar]
- Kline L. K., Fittler F., Hall R. H. N6-(delta-2-isopentenyl) adenosine. Biosynthesis in transfer ribonucleic acid in vitro. Biochemistry. 1969 Nov;8(11):4361–4371. doi: 10.1021/bi00839a021. [DOI] [PubMed] [Google Scholar]
- Loehr J. S., Keller E. B. Dimers of alanine transfer RNA with acceptor activity. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1115–1122. doi: 10.1073/pnas.61.3.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann M. B., Huang P. C. New chromatographic form of phenylalanine transfer ribonucleic acid from Escherichia coli growing exponentially in a low-phosphate medium. J Bacteriol. 1974 Apr;118(1):209–212. doi: 10.1128/jb.118.1.209-212.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maxwell I. H., Wimmer E., Tener G. M. The isolation of yeast tyrosine and tryptophan transfer ribonucleic acids. Biochemistry. 1968 Jul;7(7):2629–2634. doi: 10.1021/bi00847a027. [DOI] [PubMed] [Google Scholar]
- McMillian R. A., Arceneaux J. L. Alteration of tyrosine isoaccepting transfer ribonucleic acid species in wild-type and asporogenous strains of Bacillus subtilis. J Bacteriol. 1975 May;122(2):526–531. doi: 10.1128/jb.122.2.526-531.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millar D. B., MacKenzie M. The acid-induced aggregation of E. coli s-RNA. Biochem Biophys Res Commun. 1966 Jun 21;23(6):804–809. doi: 10.1016/0006-291x(66)90558-4. [DOI] [PubMed] [Google Scholar]
- Nishimura S., Harada F., Narushima U., Seno T. Purification of methionine-, valine-, phenylalanine- and tyrosine-specific tRNA from Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):133–148. doi: 10.1016/0005-2787(67)90522-9. [DOI] [PubMed] [Google Scholar]
- Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
- Pigott G. H., Midgley J. E. Characterization of rapidly labelled ribonucleic acid in Escherichia coli by deoxyribonucleic acid-ribonucleic acid hybridization. Biochem J. 1968 Nov;110(2):251–263. doi: 10.1042/bj1100251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg A. H., Gefter M. L. An iron-dependent modification of several transfer RNA species in Escherichia coli. J Mol Biol. 1969 Dec 28;46(3):581–584. doi: 10.1016/0022-2836(69)90197-1. [DOI] [PubMed] [Google Scholar]
- Roy K. L., Söll D. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases. J Biol Chem. 1970 Mar 25;245(6):1394–1400. [PubMed] [Google Scholar]
- SZULMAJSTER J. BIOCHIMIE DE LA SPOROG'EN'ESE CHEZ B. SUBTILIS. Bull Soc Chim Biol (Paris) 1964;46:443–481. [PubMed] [Google Scholar]
- Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sueoka N., Kano-Sueoka T. Transfer RNA and cell differentiation. Prog Nucleic Acid Res Mol Biol. 1970;10:23–55. doi: 10.1016/s0079-6603(08)60560-7. [DOI] [PubMed] [Google Scholar]
- Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: changes in chromatography of transfer ribonucleic acids associated with stage of development. J Bacteriol. 1973 Apr;114(1):178–182. doi: 10.1128/jb.114.1.178-182.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: chromatographic differences between transfer ribonucleic acids from spores and cells in exponential growth. J Bacteriol. 1973 Feb;113(2):825–833. doi: 10.1128/jb.113.2.825-833.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vold B. S., Clinton G. M., Spizizen J. An effect of temperature on the Bacillus subtillis transfer RNA's which respond to codons beginning with U and A correlation with cytokinin activity. Biochim Biophys Acta. 1970;209(2):396–404. doi: 10.1016/0005-2787(70)90737-9. [DOI] [PubMed] [Google Scholar]
- Wettstein F. O., Stent G. S. Physiologically induced changes in the property of phenylalanine tRNA in Escherichia coli. J Mol Biol. 1968 Nov 28;38(1):25–40. doi: 10.1016/0022-2836(68)90126-5. [DOI] [PubMed] [Google Scholar]
- YAMANE T., SUEOKA N. CONSERVATION OF SPECIFICITY BETWEEN AMINO ACID ACCEPTOR RNA AND AMINO ACYL-SRNA SYNTHETASE. Proc Natl Acad Sci U S A. 1963 Dec;50:1093–1100. doi: 10.1073/pnas.50.6.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]