Abstract
The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berman K. S., Gibbons R. J., Nalbandian J. Localization of intracellular polysaccharide granules in Streptococcus mitis. Arch Oral Biol. 1967 Oct;12(10):1133–1138. doi: 10.1016/0003-9969(67)90061-1. [DOI] [PubMed] [Google Scholar]
- Chen G. S., Segel I. H. Escherichia coli polyglucose phosphorylases. Arch Biochem Biophys. 1968 Sep 20;127(1):164–174. doi: 10.1016/0003-9861(68)90213-0. [DOI] [PubMed] [Google Scholar]
- Chen G. S., Segel I. H. Purification and properties of glycogen phosphorylase from Escherichia coli. Arch Biochem Biophys. 1968 Sep 20;127(1):175–186. doi: 10.1016/0003-9861(68)90214-2. [DOI] [PubMed] [Google Scholar]
- Coleman R. Membrane-bound enzymes and membrane ultrastructure. Biochim Biophys Acta. 1973 Apr 3;300(1):1–30. doi: 10.1016/0304-4157(73)90010-5. [DOI] [PubMed] [Google Scholar]
- DAHLQVIST A. Determination of maltase and isomaltase activities with a glucose-oxidase reagent. Biochem J. 1961 Sep;80:547–551. doi: 10.1042/bj0800547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAWES E. A., RIBBONS D. W. SOME ASPECTS OF THE ENDOGENOUS METABOLISM OF BACTERIA. Bacteriol Rev. 1964 Jun;28:126–149. doi: 10.1128/br.28.2.126-149.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer E. H., Pocker A., Saari J. C. The structure, function and control of glycogen phosphorylase. Essays Biochem. 1970;6:23–68. [PubMed] [Google Scholar]
- Frank R. M., Brendel A. Ultrastructure of the approximal dental plaque and the underlying normal and carious enamel. Arch Oral Biol. 1966 Sep;11(9):883–912. doi: 10.1016/0003-9969(66)90080-x. [DOI] [PubMed] [Google Scholar]
- GIBBONS R. J., KAPSIMALIS B. Synthesis of intracellular iodophilic polysaccharide by Streptococcus mitis. Arch Oral Biol. 1963 May-Jun;8:319–329. doi: 10.1016/0003-9969(63)90024-4. [DOI] [PubMed] [Google Scholar]
- GIBBONS R. J. METABOLISM OF INTRACELLULAR POLYSACCHARIDE BY STREPTOCOCCUS MITIS AND ITS RELATION TO INDUCIBLE ENZYME FORMATION. J Bacteriol. 1964 Jun;87:1512–1520. doi: 10.1128/jb.87.6.1512-1520.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giri N. Y., French D. Pseudo-priming of Escherichia coli maltodextrin phosphorylase by 6 3 - -D-glucopyranosyl maltotriose. Arch Biochem Biophys. 1971 Aug;145(2):505–510. doi: 10.1016/s0003-9861(71)80010-3. [DOI] [PubMed] [Google Scholar]
- Gunja-Smith Z., Marshall J. J., Smith E. E., Whelan W. J. A glycogen-debranching enzyme from Cytophaga. FEBS Lett. 1970 Dec 28;12(2):96–100. doi: 10.1016/0014-5793(70)80572-5. [DOI] [PubMed] [Google Scholar]
- Hamilton I. R. Synthesis and degradiation of intracellular polyglucose in Streptococcus salivarius. Can J Microbiol. 1968 Jan;14(1):65–77. doi: 10.1139/m68-011. [DOI] [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Houslay M. D., Tipton K. F. Rat liver mitochondrial monoamine oxidase. A change in the reaction mechanism on solubilization. Biochem J. 1975 Feb;145(2):311–321. doi: 10.1042/bj1450311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khandelwal R. L., Spearman T. N., Hamilton I. R. Purification and properties of glycogen phosphorylase from Streptococcus salivarius. Arch Biochem Biophys. 1973 Jan;154(1):295–305. doi: 10.1016/0003-9861(73)90061-1. [DOI] [PubMed] [Google Scholar]
- LELOIR L. F., GOLDEMBERG S. H. Synthesis of glycogen from uridine diphosphate glucose in liver. J Biol Chem. 1960 Apr;235:919–923. [PubMed] [Google Scholar]
- Lee E. Y., Braun J. J. Purification and properties of -1,4-glucan phosphorylase from sweet corn. Ann N Y Acad Sci. 1973 Feb 9;210:115–128. doi: 10.1111/j.1749-6632.1973.tb47566.x. [DOI] [PubMed] [Google Scholar]
- Schwartz M., Hofnung M. La maltodextrine phosphorylase d'Escherichia coli. Eur J Biochem. 1967 Sep;2(2):132–145. doi: 10.1111/j.1432-1033.1967.tb00117.x. [DOI] [PubMed] [Google Scholar]
- Shepherd D., Segel I. H. Glycogen phosphorylase of Neurospora crassa. Arch Biochem Biophys. 1969 May;131(2):609–620. doi: 10.1016/0003-9861(69)90436-6. [DOI] [PubMed] [Google Scholar]
- Smith E. E. On the affinity of rabbit-muscle glycogen phosphorylase for highly branched macromolecular subtrates. Arch Biochem Biophys. 1971 Oct;146(2):380–390. doi: 10.1016/0003-9861(71)90140-8. [DOI] [PubMed] [Google Scholar]
- Srinivasan R., Karczmar A., Bernsohn J. Activation of acetylcholinesterase by Triton X-100. Biochim Biophys Acta. 1972 Sep 19;284(1):349–354. doi: 10.1016/0005-2744(72)90073-3. [DOI] [PubMed] [Google Scholar]
- TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
- Tata J. R. Subcellular redistribution of a liver alpha-glucan phosphorylase during alterations in glycogen content. Biochem J. 1964 Feb;90(2):284–292. doi: 10.1042/bj0900284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Téllez-Iñn M. T., Torres H. N. Interconvertible forms of glycogen phosphorylase in Neurospora crassa. Proc Natl Acad Sci U S A. 1970 Jun;66(2):459–463. doi: 10.1073/pnas.66.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHELAN W. J., BAILEY J. M. The action pattern of potato phosphorylase. Biochem J. 1954 Dec;58(4):560–569. doi: 10.1042/bj0580560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker G. J., Builder J. E. Metabolism of the reserve polysaccharide of Streptococcus mitis. Properties of branching enzyme, and its effect on the activity of glycogen synthetase. Eur J Biochem. 1971 May 11;20(1):14–21. doi: 10.1111/j.1432-1033.1971.tb01356.x. [DOI] [PubMed] [Google Scholar]
- Walker G. J. Metabolism of the reserve polysaccharide of Streptococcus mitis: Properties of a transglucosylase. Biochem J. 1966 Dec;101(3):861–872. doi: 10.1042/bj1010861. [DOI] [PMC free article] [PubMed] [Google Scholar]
