Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jun;126(3):1037–1041. doi: 10.1128/jb.126.3.1037-1041.1976

Repair deficiency, mutator activity, and thermal prophage inducibility in dna-8132 strains of Bacillus subtilis.

Y Sadaie, K Narui
PMCID: PMC233123  PMID: 820681

Abstract

A ts mutation, dna-8132 (Hara and Yoshikawa, 1973), in the region of chromosome replication origin of Bacillus subtilis was found to cause pleiotropic effects at a permissive temperature (30 C). Strains carrying this mutation were lethan at 48 C but exhibited higher spontaneous mutation frequency and a lower capacity for repairing radiation damages at 30C. Introduction of the polA59 (Gass et al., 1971) mutation further enhanced the repair deficiency and the mutator activity. These results suggest that the dna-8132 gene product may be directly involved in chromosome replication and repair. SPO2 lysogens carrying this mutation produced mature phages upon a temperature shift from 30 to 48 C. Phage production at nonpermissive temperature suggests that there are few defects in the precursors of deoxyribonucleic acid synthesis in the mutant.

Full text

PDF
1037

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bazill G. W., Gross J. D. Mutagenic DNA polymerase in B. subtilis. Nat New Biol. 1973 Jun 20;243(129):241–243. doi: 10.1038/newbio243241a0. [DOI] [PubMed] [Google Scholar]
  3. Gass K. B., Hill T. C., Goulian M., Strauss B. S., Cozzarelli N. R. Altered deoxyribonucleic acid polymerase activity in a methyl methanesulfonate-sensitive mutant of Bacillus subtilis. J Bacteriol. 1971 Oct;108(1):364–374. doi: 10.1128/jb.108.1.364-374.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hara H., Yoshikawa H. Asymmetric bidirectional replication of Bacillus subtilis chromosome. Nat New Biol. 1973 Aug 15;244(137):200–203. doi: 10.1038/newbio244200a0. [DOI] [PubMed] [Google Scholar]
  5. Kada T., Tutikawa K., Sadaie Y. In vitro and host-mediated "rec-assay" procedures for screening chemical mutagens; and phloxine, a mutagenic red dye detected. Mutat Res. 1972 Oct;16(2):165–174. doi: 10.1016/0027-5107(72)90177-7. [DOI] [PubMed] [Google Scholar]
  6. Okubo S., Romig W. R. Impaired transformability of Bacillus subtilis mutant sensitive to mitomycin C and ultraviolet radiation. J Mol Biol. 1966 Feb;15(2):440–454. doi: 10.1016/s0022-2836(66)80120-1. [DOI] [PubMed] [Google Scholar]
  7. Okubo S., Yanagida T. Isolation of a suppressor mutant in Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):1187–1188. doi: 10.1128/jb.95.3.1187-1188.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rutberg L., Armentrout R. W., Jonasson J. Unrelatedness of temperate Bacillus subtilis bacteriophages SP02 and phi105. J Virol. 1972 May;9(5):732–737. doi: 10.1128/jvi.9.5.732-737.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sadaie Y., Kada T. Recombination-deficient mutants of Bacillus subtilis. J Bacteriol. 1976 Feb;125(2):489–500. doi: 10.1128/jb.125.2.489-500.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shub D. A. Nature of the suppressor of Bacillus subtilis HA101B. J Bacteriol. 1975 May;122(2):788–790. doi: 10.1128/jb.122.2.788-790.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Smith D. W. DNA synthesis in prokaryotes: replication. Prog Biophys Mol Biol. 1973;26:321–408. doi: 10.1016/0079-6107(73)90022-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES