Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jun;126(3):1136–1140. doi: 10.1128/jb.126.3.1136-1140.1976

Incorporation of deoxycytidine into deoxyribonucleic acid deoxycytidylate in Lactobacillus acidophilus R-26.

M T Davis, D H Ives
PMCID: PMC233136  PMID: 820682

Abstract

Lactobacillus acidophilus R-26 a strain deficient in ribonucleotide reductase, was grown with [G-14C]deoxycytidine as the only source of deoxyribose in the medium. Of the radioactivity incorporated into deoxyribonucleic acid, a fifth moved directly into deoxyribonucleic acid deoxycytidylate, without deamination. Furthermore, deoxycytidine and thymidine nucleotides had similar sugar/base ratios, suggesting a direct conversion of deoxycytidine nucleotides to thymidine nucleotides through deamination, without further dilution by glycosyl transfer. Although radioactivity was incorporated into both the sugar and base moieties of deoxyribonucleic acid pyrimidine deoxyribonucleotides, only the sugar moiety of purine deoxyribonucleotides was labeled. Purine deoxyribonucleotides probably were synthesized by glycosyl transfer from [G-14C]deoxycytidine to unlabeled purines, followed by phosphorylation of the deoxynucleotides.

Full text

PDF
1136

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B., Tomasz A. Selective utilization of pyrimidine deoxyribonucleosides for deoxyribonucleic acid synthesis in pneumococcus. J Bacteriol. 1973 Mar;113(3):1356–1362. doi: 10.1128/jb.113.3.1356-1362.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Durham J. P., Ives D. H. The metabolism of deoxyribonucleosides in Lactobacillus acidophilus: regulation of deoxyadenosine, deoxycytidine, deoxyguanosine and deoxythymidine kinase activ-ties by nucleotides. Biochim Biophys Acta. 1971 Jan 1;228(1):9–25. doi: 10.1016/0005-2787(71)90542-9. [DOI] [PubMed] [Google Scholar]
  3. Fink K., Adams W. S. Paper chromatographic data for purines, pyrimidines and derivatives in a variety of solvents. J Chromatogr. 1966 Apr;22(1):118–129. doi: 10.1016/s0021-9673(01)97077-3. [DOI] [PubMed] [Google Scholar]
  4. HOFF-JØRGENSEN E. A microbiological assay of deoxyribonucleosides and deoxyribonucleic acid. Biochem J. 1952 Jan;50(3):400–403. doi: 10.1042/bj0500400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holguin J., Cardinaud R. Trans-N-deoxyribosylase: substrate specificity studies. Purine bases as acceptors. Eur J Biochem. 1975 Jun;54(2):515–520. doi: 10.1111/j.1432-1033.1975.tb04164.x. [DOI] [PubMed] [Google Scholar]
  6. Ives D. H., Durham J. P., Tucker V. S. Rapid determination of nucleoside kinase and nucleotidase activities with tritium-labeled substrates. Anal Biochem. 1969 Apr 4;28(1):192–205. doi: 10.1016/0003-2697(69)90170-5. [DOI] [PubMed] [Google Scholar]
  7. Karlström H. O. Inability of Escherichia coli B to incorporate added deoxycytidine, deoxyandenosine, and deoxyguanosine into DNA. Eur J Biochem. 1970 Nov;17(1):68–71. doi: 10.1111/j.1432-1033.1970.tb01135.x. [DOI] [PubMed] [Google Scholar]
  8. MACNUTT W. S. The enzymically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochem J. 1952 Jan;50(3):384–397. doi: 10.1042/bj0500384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Munch-Petersen A. On the catabolism of deoxyribonucleosides in cells and cell extracts of Escherichia coli. Eur J Biochem. 1968 Nov;6(3):432–442. doi: 10.1111/j.1432-1033.1968.tb00465.x. [DOI] [PubMed] [Google Scholar]
  10. Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: identification and function in Salmonella typhimurium. J Bacteriol. 1971 Feb;105(2):657–665. doi: 10.1128/jb.105.2.657-665.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reeves W. J., Jr, Seid A., Greenberg D. M. A new paper chromatography solvent system resolving pyrimidine-pyrimidine riboside-pyrimidine deoxyriboside mixtures. Anal Biochem. 1969 Sep;30(3):474–477. doi: 10.1016/0003-2697(69)90145-6. [DOI] [PubMed] [Google Scholar]
  12. Sawula R. V., Zamenhof S., Zamenhof P. J. Degradation of thymidine by Lactobacillus acidophilus. J Bacteriol. 1974 Mar;117(3):1358–1360. doi: 10.1128/jb.117.3.1358-1360.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sawula R. V., Zamenhof S., Zamenhof P. J. Participation of exogenous thymine and thymidine in deoxyribonucleic acid synthesis in Lactobacillus acidophilus. Can J Microbiol. 1975 Apr;21(4):501–509. doi: 10.1139/m75-071. [DOI] [PubMed] [Google Scholar]
  14. Sergott R. C., Debeer L. J., Bessman M. J. On the regulation of a bacterial deoxycytidylate deaminase. J Biol Chem. 1971 Dec 25;246(24):7755–7758. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES