Abstract
We studied the purine phosphoribosyltransferases (PRTases) of Escherichia coli and were able to isolate a mutant that is defective in its ability to convert guanine and xanthine to their respective ribonucleotides. The affected gene (gpt) lies between metD and proA and is 78.6% co-transducible with proA. Both this point mutant and a strain with a pro-lac deletion contain less than 2% of wild-type xanthine PRTase activity, yet still contain about 30% of wild-type guanine PRTase activity. Thus, the gpt gene is only one of at least two genes responsible for guanine PRTase activity in E. coli.
Full text
PDF![1141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/e66dd58d3010/jbacter00319-0129.png)
![1142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/e458c628f52d/jbacter00319-0130.png)
![1143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/89d64d4ee1e4/jbacter00319-0131.png)
![1144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/a99dc5db4375/jbacter00319-0132.png)
![1145](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/721e594350c0/jbacter00319-0133.png)
![1146](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/ad7e32798f26/jbacter00319-0134.png)
![1147](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/98e950054342/jbacter00319-0135.png)
![1148](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c1b/233137/9bb6f94bc16e/jbacter00319-0136.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adye J. C., Gots J. S. Further studies on genetically altered purine nucleotide pyrophosphorylases of Salmonella. Biochim Biophys Acta. 1966 May 5;118(2):344–350. doi: 10.1016/s0926-6593(66)80043-7. [DOI] [PubMed] [Google Scholar]
- Arnold W. J., Kelley W. N. Human hypoxanthine-guanine phosphoribosyltransferase. Purification and subunit structure. J Biol Chem. 1971 Dec 10;246(23):7398–7404. [PubMed] [Google Scholar]
- Benson C. E., Gots J. S. Genetic modification of substrate specificity of hypoxanthine phosphoribosyltransferase in Salmonella typhimurium. J Bacteriol. 1975 Jan;121(1):77–82. doi: 10.1128/jb.121.1.77-82.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chou J. Y., Martin R. G. Purine phosphoribosyltransferases of Salmonella typhimurium. J Bacteriol. 1972 Nov;112(2):1010–1013. doi: 10.1128/jb.112.2.1010-1013.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gots J. S., Benson C. E. Genetic control of bacterial purine phosphoribosyltransferases and an approach to gene enrichment. Adv Exp Med Biol. 1973;41:33–39. doi: 10.1007/978-1-4684-3294-7_5. [DOI] [PubMed] [Google Scholar]
- Gots J. S., Benson C. E., Shumas S. R. Genetic separation of hypoxanthine and guanine-xanthine phosphoribosyltransferase activities by deletion mutations in Salmonella typhimurium. J Bacteriol. 1972 Nov;112(2):910–916. doi: 10.1128/jb.112.2.910-916.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase from Escherichia coli K12 and control of activity by nucleotides. J Biol Chem. 1971 Sep 10;246(17):5294–5303. [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferases in the uptake of adenine and other nucleic acid precursors by intact resting cells. J Biol Chem. 1971 Sep 10;246(17):5312–5320. [PubMed] [Google Scholar]
- Hochstadt J. The role of the membrane in the utilization of nucleic acid precursors. CRC Crit Rev Biochem. 1974 Mar;2(2):259–310. doi: 10.3109/10409237409105449. [DOI] [PubMed] [Google Scholar]
- Hong J. S., Ames B. N. Localized mutagenesis of any specific small region of the bacterial chromosome. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3158–3162. doi: 10.1073/pnas.68.12.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoppe I., Roth J. Specialized transducing phages derived from salmonella phage P22. Genetics. 1974 Apr;76(4):633–654. doi: 10.1093/genetics/76.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes S. H., Wahl G. M., Capecchi M. R. Purification and characterization of mouse hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1975 Jan 10;250(1):120–126. [PubMed] [Google Scholar]
- KALLE G. P., GOTS J. S. Alterations in purine nucleotide pyrophosphorylases and resistance to purine analogues. Biochim Biophys Acta. 1961 Oct 14;53:166–173. doi: 10.1016/0006-3002(61)90803-4. [DOI] [PubMed] [Google Scholar]
- KALLE G. P., GOTS J. S. GENETIC ALTERATION OF ADENYLIC PYROPHOSPHORYLASE IN SALMONELLA. Science. 1963 Nov 8;142(3593):680–681. doi: 10.1126/science.142.3593.680. [DOI] [PubMed] [Google Scholar]
- Kadner R. J., Watson W. J. Methionine transport in Escherichia coli: physiological and genetic evidence for two uptake systems. J Bacteriol. 1974 Aug;119(2):401–409. doi: 10.1128/jb.119.2.401-409.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krenitsky T. A., Neil S. M., Miller R. L. Guanine and xanthine phosphoribosyltransfer activities of Lactobacillus casei and Escherichia coli. Their relationship to hypoxanthine and adenine phosphoribosyltransfer activities. J Biol Chem. 1970 May 25;245(10):2605–2611. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Livshits V. A. Kartirovanie mutatsii, narushaiushchikh sposobnost' purinovykh auksotrofov Escherichia coli ispol'zovat' guanin i ksantin dlia rosta. Genetika. 1973 Nov;9(11):134–139. [PubMed] [Google Scholar]
- Martin W. R., Yang R. R. Inosine and guanine phosphoribosyltransferase in Escherichia coli. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1641–1648. doi: 10.1016/0006-291x(72)90903-5. [DOI] [PubMed] [Google Scholar]
- Miller C. G. Gentic mapping of Salmonella typhimurium peptidase mutations. J Bacteriol. 1975 Apr;122(1):171–176. doi: 10.1128/jb.122.1.171-176.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. L., Ramsey G. A., Krenitsky T. A., Elion G. B. Guanine phosphoribosyltransferase from Escherichia coli, specificity and properties. Biochemistry. 1972 Dec 5;11(25):4723–4731. doi: 10.1021/bi00775a014. [DOI] [PubMed] [Google Scholar]
- Olsen A. S., Milman G. Chinese hamster hypoxanthine-guanine phosphoribosyltransferase. Purification, structural, and catalytic properties. J Biol Chem. 1974 Jul 10;249(13):4030–4037. [PubMed] [Google Scholar]
- Rae M. E., Stodolsky M. Chromosome breakage, fusion and reconstruction during P1dl transduction. Virology. 1974 Mar;58(1):32–54. doi: 10.1016/0042-6822(74)90139-1. [DOI] [PubMed] [Google Scholar]
- Shevhcenko V. A., Alekseenok A. Ia, Prister B. S., Riabov G. G. Izuchenie geneticheskikh éffektov, indutsiruemykh v populiatsiiakh radioaktivnymi produktami iadernogo deleniia U235. Soobshchenie I. Mutatsionnyi protsess v populiatsiiakh Chlorella vulgaris pri dlitel'nom vozdeistvii produktov iadernogo delenia U235. Genetika. 1974 Feb;10(2):106–114. [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Linkage map of Escherichia coli strain K-12. Bacteriol Rev. 1972 Dec;36(4):504–524. doi: 10.1128/br.36.4.504-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas C. B., Arnold W. J., Kelley W. N. Human adenine phosphoribosyltransferase. Purification, subunit structure, and substrate specificity. J Biol Chem. 1973 Apr 10;248(7):2529–2535. [PubMed] [Google Scholar]
- Wall J. D., Harriman P. D. Phage P1 mutants with altered transducing abilities for Escherichia coli. Virology. 1974 Jun;59(2):532–544. doi: 10.1016/0042-6822(74)90463-2. [DOI] [PubMed] [Google Scholar]