Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Jun;126(3):1207–1214. doi: 10.1128/jb.126.3.1207-1214.1976

Carnitine biosynthesis in Neurospora crassa: enzymatic conversion of lysine to epsilon-N-trimethyllysine.

C J Rebouche, H P Broquist
PMCID: PMC233145  PMID: 133101

Abstract

The enzymatic conversion of L-lysine, epsilon-N-trimethyl-L-lysine the first series of reactions in the biosynthesis of carnitine in Neurospora crassa, proceeds via sequential methylation of free L-lysine, epsilon-N-methyl-L-lysine, and epsilon -N-dimethyl-L-lysine. The latter two compounds have been shown to be intermediates in the biosynthesis of carnitine by radioisotope dilution and incorporation experiments in growing cultures of N. crassa 33933 (lys-) and 38706 (met-). Methionine but not choline, has been recognized as an effective methyl donor in vivo. Inclusion of choline in the growth medium of strain 33933 does, however, enhance incorporation of the methyl groups of L-[methyl-3H]methionine into carnitine in an apparent "sparing" effect on methionine synthesis. Studies in cell-free extracts of the lysine auxotroph strain 33933 of N. crassa have established that lysine and epsilon-N-methyl and epsilon-N-dimethyllysine are enzymatically methylated, with S-adenosyl-L-methionine as the methyl group donor. The enzyme system appears to have no essential cofactors. Lysine does not induce synthesis of the enzyme system in the wild-type strain 262, whereas both carnitine and epsilon-N-trimethyllysine repress its synthesis in strain 33933.

Full text

PDF
1207

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLFREY V. G., FAULKNER R., MIRSKY A. E. ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. Proc Natl Acad Sci U S A. 1964 May;51:786–794. doi: 10.1073/pnas.51.5.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ARTOM C. Rôle of choline in the oxidation of fatty acids by the liver. J Biol Chem. 1953 Nov;205(1):101–111. [PubMed] [Google Scholar]
  3. BREMER J. Carnitine precursors in the rat. Biochim Biophys Acta. 1962 Feb 26;57:327–335. doi: 10.1016/0006-3002(62)91126-5. [DOI] [PubMed] [Google Scholar]
  4. CROCKEN B. J., NYC J. F. PHOSPHOLIPID VARIATIONS IN MUTANT STRAINS OF NEUROSPORA CRASSA. J Biol Chem. 1964 Jun;239:1727–1730. [PubMed] [Google Scholar]
  5. Cantoni G. L. Biological methylation: selected aspects. Annu Rev Biochem. 1975;44:435–451. doi: 10.1146/annurev.bi.44.070175.002251. [DOI] [PubMed] [Google Scholar]
  6. Corredor C., Mansbach C., Bressler R. Carnitine depletion in the choline-deficient state. Biochim Biophys Acta. 1967 Oct 2;144(2):366–374. doi: 10.1016/0005-2760(67)90165-8. [DOI] [PubMed] [Google Scholar]
  7. Cox R. A., Hoppel C. L. Biosynthesis of carnitine and 4-N-trimethylaminobutyrate from 6-N-trimethyl-lysine. Biochem J. 1973 Dec;136(4):1083–1090. doi: 10.1042/bj1361083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox R. A., Hoppel C. L. Biosynthesis of carnitine and 4-N-trimethylaminobutyrate from lysine. Biochem J. 1973 Dec;136(4):1075–1082. doi: 10.1042/bj1361075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenaway P. J., Levine D. Identification of a soluble protein methylase in chicken embryo nuclei. Biochim Biophys Acta. 1974 Jun 18;350(2):374–382. doi: 10.1016/0005-2744(74)90511-7. [DOI] [PubMed] [Google Scholar]
  10. Hardy M. F., Harris C. I., Perry S. V., Stone D. Occurrence and formation of the N epsilon-methyl-lysines in myosin and the myofibrillar proteins. Biochem J. 1970 Dec;120(3):653–660. doi: 10.1042/bj1200653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horne D. W., Broquist H. P. Role of lysine and -N-trimethyllysine in carnitine biosynthesis. I. Studies in Neurospora crassa. J Biol Chem. 1973 Mar 25;248(6):2170–2175. [PubMed] [Google Scholar]
  12. Horne D. W., Tanphaichitr V., Broquist H. P. Role of lysine in carnitine biosynthesis in Neurospora crassa. J Biol Chem. 1971 Jul 10;246(13):4373–4375. [PubMed] [Google Scholar]
  13. Kim S., Paik W. K. Studies on the origin of epsilon-N-methyl-L-lysine in protein. J Biol Chem. 1965 Dec;240(12):4629–4634. [PubMed] [Google Scholar]
  14. Krzysik B., Vergnes J. P., McManus I. Enzymatic methylation of skeletal muscle contractile proteins. Arch Biochem Biophys. 1971 Sep;146(1):34–45. doi: 10.1016/s0003-9861(71)80038-3. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lindstedt G. Hydroxylation of gamma-butyrobetaine to carnitine in rat liver. Biochemistry. 1967 May;6(5):1271–1282. doi: 10.1021/bi00857a007. [DOI] [PubMed] [Google Scholar]
  17. Lindstedt G., Lindstedt S. Cofactor requirements of gamma-butyrobetaine hydroxylase from rat liver. J Biol Chem. 1970 Aug 25;245(16):4178–4186. [PubMed] [Google Scholar]
  18. Lindstedt G., Lindstedt S., Tofft M. Gamma-butyrobetaine hydroxylase from Pseudomonas sp AK 1. Biochemistry. 1970 Oct 27;9(22):4336–4342. doi: 10.1021/bi00824a014. [DOI] [PubMed] [Google Scholar]
  19. Morse R. K., Vergnes J. P., Malloy J., McManus I. R. Sites of biological methylation of proteins in cultured chick muscle cells. Biochemistry. 1975 Sep 23;14(19):4316–4325. doi: 10.1021/bi00690a028. [DOI] [PubMed] [Google Scholar]
  20. Paik W. K., Kim S. Protein methylation. Science. 1971 Oct 8;174(4005):114–119. doi: 10.1126/science.174.4005.114. [DOI] [PubMed] [Google Scholar]
  21. Paik W. K., Kim S. Protein methylation: chemical, enzymological, and biological significance. Adv Enzymol Relat Areas Mol Biol. 1975;42:227–286. doi: 10.1002/9780470122877.ch5. [DOI] [PubMed] [Google Scholar]
  22. Paik W. K., Kim S. Solubilization and partial purification of protein methylase 3 from calf thymus nuclei. J Biol Chem. 1970 Nov 25;245(22):6010–6015. [PubMed] [Google Scholar]
  23. Reinhold V. N., Ishikawa Y., Melville D. B. Conversion of histidine to hercynine by Neurospora crassa. J Bacteriol. 1970 Mar;101(3):881–884. doi: 10.1128/jb.101.3.881-884.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reporter M. Protein synthesis in cultured muscle cells: methylation of nascent proteins. Arch Biochem Biophys. 1973 Oct;158(2):577–585. doi: 10.1016/0003-9861(73)90550-x. [DOI] [PubMed] [Google Scholar]
  25. Scarborough G. A., Nyc J. F. Methylation of ethanolamine phosphatides by microsomes from normal and mutant strains of Neurospora crassa. J Biol Chem. 1967 Jan 25;242(2):238–242. [PubMed] [Google Scholar]
  26. Seely J. H., Edattel R., Benoiton N. L. A quick separation of the epsilon-N-methyl-lysines using the amino acid analyzer. J Chromatogr. 1969 Nov 11;44(3):618–620. doi: 10.1016/s0021-9673(01)92588-9. [DOI] [PubMed] [Google Scholar]
  27. Tanphaichitr V., Broquist H. P. Role of lysine and -N-trimethyllysine in carnitine biosynthesis. II. Studies in the rat. J Biol Chem. 1973 Mar 25;248(6):2176–2181. [PubMed] [Google Scholar]
  28. Tanphaichitr V., Horne D. W., Broquist H. P. Lysine, a precursor of carnitine in the rat. J Biol Chem. 1971 Oct 25;246(20):6364–6366. [PubMed] [Google Scholar]
  29. WOLF G., BERGER C. R. Studies on the biosynthesis and turnover of carnitine. Arch Biochem Biophys. 1961 Feb;92:360–365. doi: 10.1016/0003-9861(61)90362-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES