Abstract
Mutations causing hypersensitivity to catabolite repression have been assigned to gene araC (activator protein) by complementation analysis. The araO (operator region) is non-essential for catabolite repression.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eleuterio M., Griffin B., Sheppard D. E. Characterization of strong polar mutations in a region immediately adjacent to the L-arabinose operator in Escherichia coli B-r. J Bacteriol. 1972 Aug;111(2):383–391. doi: 10.1128/jb.111.2.383-391.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englesberg E., Squires C., Meronk F., Jr The L-arabinose operon in Escherichia coli B-r: a genetic demonstration of two functional states of the product of a regulator gene. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1100–1107. doi: 10.1073/pnas.62.4.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Englesberg E., Wilcox G. Regulation: positive control. Annu Rev Genet. 1974;8:219–242. doi: 10.1146/annurev.ge.08.120174.001251. [DOI] [PubMed] [Google Scholar]
- Gendron R. P., Sheppard D. E. Mutations in the L-arabinose operon of Escherichia coli B-r that result in hypersensitivity to catabolite repression. J Bacteriol. 1974 Feb;117(2):417–421. doi: 10.1128/jb.117.2.417-421.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz L., Englesberg E. Hyperinducibility as a result of mutation in structural genes and self-catabolite repression in the ara operon. J Bacteriol. 1971 Jul;107(1):34–52. doi: 10.1128/jb.107.1.34-52.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee N., Wilcox G., Gielow W., Arnold J., Cleary P., Englesberg E. In vitro activation of the transcription of araBAD operon by araC activator. Proc Natl Acad Sci U S A. 1974 Mar;71(3):634–638. doi: 10.1073/pnas.71.3.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathanson N. M., Schleif R. Novel mutation to dominant fucose resistance in the L-arabinose operon of Escherichia coli. J Bacteriol. 1973 Aug;115(2):711–713. doi: 10.1128/jb.115.2.711-713.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
- Wilcox G., Boulter J., Lee N. Direction of transcription of the regulatory gene araC in Escherichia coli B-r. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3635–3639. doi: 10.1073/pnas.71.9.3635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcox G., Clemetson K. J., Cleary P., Englesberg E. Interaction of the regulatory gene product with the operator site in the L-arabinose operon of Escherichia coli. J Mol Biol. 1974 Jan 5;85(4):589–602. doi: 10.1016/0022-2836(74)90317-9. [DOI] [PubMed] [Google Scholar]
- Wilcox G., Meuris P., Bass R., Englesberg E. Regulation of the L-arabinose operon BAD in vitro. J Biol Chem. 1974 May 10;249(9):2946–2952. [PubMed] [Google Scholar]
- Wilcox G. The interaction of L-arabinose and D-fucose with AraC protein. J Biol Chem. 1974 Nov 10;249(21):6892–6894. [PubMed] [Google Scholar]
