Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Apr;126(1):7–12. doi: 10.1128/jb.126.1.7-12.1976

Siderophore protection against colicins M, B, V, and Ia in Escherichia coli.

R Wayne, K Frick, J B Neilands
PMCID: PMC233253  PMID: 131121

Abstract

A variety of natural and synthetic siderophores capable of supporting the growth of Escherichia coli K-12 on iron-limited media also protect strain RW193+ (tonA+ ent-) from the killing action of colicins B, V, and Ia. Protective activity falls into two categories. The first, characteristic of enterobactin protection against colicin B and ferrichrome protection against colicin M, has properties of a specific receptor competition between the siderophore and the colicin. Thus, enterobactin specifically protects against colicin B in fes- mutants (able to accumulate but unable to utilize enterobactin) as predicted by our proposal that the colicin B receptor functions in the specific binding for uptake of enterobactin (Wayne and Neilands, 1975). Similarly ferrichrome specifically protects against colicin M in SidA mutants (defective in hydroxamate siderophore utilization). The second category of protective response, characteristic of the more general siderophore inhibition of colicins B, V, and Ia, requires the availability or metabolism of siderophore iron. Thus, enterobactin protects against colicins V and Ia, but only when the colicin indicator strain is fes+, and hydroxamate siderophores inhibit colicins B, V, and Ia, but only when the colicin indicator strain is SidA+. Moreover, ferrichrome inhibits colicins B, V, and Ia, yet chromium (III) deferriferrichrome is inactive, and ferrichrome itself does not prevent adsorption of colicin Ia receptor material in vitro. Although the nonspecific protection against colicins B, V, and Ia requires iron, the availability of siderophore iron for cell growth is not sufficient to bring about protection. None of the siderophores tested protect cells against the killing action of colicin E1 or K, or against the energy poisons azide, 2, 4-dinitrophenol, and carbonylcyanide m-chlorophenylhydrazone. We suggest that nonspecific siderophore protection against colicins B, V, and Ia may be due either to an induction of membrane alterations in response to siderophore iron metabolism or to a direct interference by siderophore iron with some unknown step in colicin action subsequent to adsorption.

Full text

PDF
7

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Davies J. K., Reeves P. Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group B. J Bacteriol. 1975 Jul;123(1):96–101. doi: 10.1128/jb.123.1.96-101.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Di Masi D. R., White J. C., Schnaitman C. A., Bradbeer C. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol. 1973 Aug;115(2):506–513. doi: 10.1128/jb.115.2.506-513.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frost G. E., Rosenberg H. Relationship between the tonB locus and iron transport in Escherichia coli. J Bacteriol. 1975 Nov;124(2):704–712. doi: 10.1128/jb.124.2.704-712.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilchrist M. J., Konisky J. Effects of colicin Ia on transport and respiration in Escherichia coli. J Biol Chem. 1975 Apr 10;250(7):2457–2462. [PubMed] [Google Scholar]
  5. Goldberg R. B., Bender R. A., Streicher S. L. Direct selection for P1-sensitive mutants of enteric bacteria. J Bacteriol. 1974 Jun;118(3):810–814. doi: 10.1128/jb.118.3.810-814.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guterman S. K. Colicin B: mode of action and inhibition by enterochelin. J Bacteriol. 1973 Jun;114(3):1217–1224. doi: 10.1128/jb.114.3.1217-1224.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guterman S. K., Dann L. Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J Bacteriol. 1973 Jun;114(3):1225–1230. doi: 10.1128/jb.114.3.1225-1230.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guterman S. K. Inhibition of colicin B by enterochelin. Biochem Biophys Res Commun. 1971 Sep;44(5):1149–1155. doi: 10.1016/s0006-291x(71)80206-1. [DOI] [PubMed] [Google Scholar]
  9. Hantke K., Braun V. Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett. 1975 Jan 1;49(3):301–305. doi: 10.1016/0014-5793(75)80771-x. [DOI] [PubMed] [Google Scholar]
  10. Hazelbauer G. L. Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol. 1975 Oct;124(1):119–126. doi: 10.1128/jb.124.1.119-126.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kadner R. J., Liggins G. L. Transport of vitamin B12 in Escherichia coli: genetic studies. J Bacteriol. 1973 Aug;115(2):514–521. doi: 10.1128/jb.115.2.514-521.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konisky J., Cowell B. S., Gilchrist M. J. Colicin Ia and Ib binding to Escherichia coli envelopes and partially purified cell walls. J Supramol Struct. 1973;1(3):208–219. doi: 10.1002/jss.400010306. [DOI] [PubMed] [Google Scholar]
  13. Konisky J., Liu C. T. Solubilization and partial characterization of the colicin I receptor of Escherichia coli. J Biol Chem. 1974 Feb 10;249(3):835–840. [PubMed] [Google Scholar]
  14. Konisky J., Richards F. M. Characterization of colicin Ia and colicin Ib. Purification and some physical properties. J Biol Chem. 1970 Jun 10;245(11):2972–2978. [PubMed] [Google Scholar]
  15. Langman L., Young I. G., Frost G. E., Rosenberg H., Gibson F. Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase. J Bacteriol. 1972 Dec;112(3):1142–1149. doi: 10.1128/jb.112.3.1142-1149.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Luckey M., Pollack J. R., Wayne R., Ames B. N., Neilands J. B. Iron uptake in Salmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J Bacteriol. 1972 Sep;111(3):731–738. doi: 10.1128/jb.111.3.731-738.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Luckey M., Wayne R., Neilands J. B. In vitro competition between ferrichrome and phage for the outer membrane T5 receptor complex of Escherichia coli. Biochem Biophys Res Commun. 1975 May 19;64(2):687–693. doi: 10.1016/0006-291x(75)90375-7. [DOI] [PubMed] [Google Scholar]
  18. Nagel de Zwaig R., Luria S. E. Genetics and physiology of colicin-tolerant mutants of Escherichia coli. J Bacteriol. 1967 Oct;94(4):1112–1123. doi: 10.1128/jb.94.4.1112-1123.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Szmelcman S., Hofnung M. Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol. 1975 Oct;124(1):112–118. doi: 10.1128/jb.124.1.112-118.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang C. C., Newton A. An additional step in the transport of iron defined by the tonB locus of Escherichia coli. J Biol Chem. 1971 Apr 10;246(7):2147–2151. [PubMed] [Google Scholar]
  21. Wayne R., Neilands J. B. Evidence for common binding sites for ferrichrome compounds and bacteriophage phi 80 in the cell envelope of Escherichia coli. J Bacteriol. 1975 Feb;121(2):497–503. doi: 10.1128/jb.121.2.497-503.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES