Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1976 Apr;126(1):338–347. doi: 10.1128/jb.126.1.338-347.1976

Lysine catabolism in Rhizoctonia leguminicola and related fungi.

F P Guengerich, H P Broquist
PMCID: PMC233291  PMID: 131119

Abstract

The catabolism of lysine was studied in several yeasts and fungi. Results with cell-free extracts of Rhizoctonia leguminicola support a proposed pathway involving (D- and L-) EPSILON-N-acetyllysine, alpha-keto-epsilon-acetamidohexanoic acid, delta-acetamidovaleric acid, and delta-aminovaleric acid in the conversion of L-lysine to shortchain organic acids. Label from radioactive L-lysine was found to accumulate in D- and L-epsilon-N-acetyllysine, delta-acetamidovaleric acid, delta-aminovaleric acid, and glutaric acid in cultures of R. leguminicola, Neurospora crassa, Saccharomyces cerevisiae, and Hansenula saturnus, suggesting that the proposed omega-acetyl pathway of lysine catabolism is generalized among yeasts and fungi. In N. crassa, as is the case in R. leguminicola, the major precursor of L-pipecolic acid was the L-isomer of lysine; 15N experiments were consistent with delta1-piperideine-2-carboxylic acid as an intermediate in the transformation.

Full text

PDF
338

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calvert A. F., Rodwell V. W. Metabolism of pipecolic acid in a Pseudomonas species. 3. L-alpha-aminoadipate delta-semialdehyde:nicotinamide adenine dinucleotide oxidoreductase. J Biol Chem. 1966 Jan 25;241(2):409–414. [PubMed] [Google Scholar]
  2. Grove J. A., Gilbertson T. J., Hammerstedt R. H., Henderson L. M. The metabolism of D- and L-lysine specifically labeled with 15N. Biochim Biophys Acta. 1969 Jul 30;184(2):329–337. doi: 10.1016/0304-4165(69)90035-x. [DOI] [PubMed] [Google Scholar]
  3. Guengerich F. P., Broquist H. P. Biosynthesis of slaframine, (1S,6S,8aS)-1-acetoxy-6-aminooctahydroindolizine, a parasympathomimetic alkaloid of fungal origin. II. The origin of pipecolic acid. Biochemistry. 1973 Oct 9;12(21):4270–4274. doi: 10.1021/bi00745a035. [DOI] [PubMed] [Google Scholar]
  4. Guengerich F. P., Snyder J. J., Broquist H. P. Biosynthesis of slaframine, (1S,6S,8aS)-1-acetoxy-6-aminooctahydroindolizine, a parasympathomimetic alkaloid of fungal origin. I. Pipecolic acid and slaframine biogenesis. Biochemistry. 1973 Oct 9;12(21):4264–4269. doi: 10.1021/bi00745a034. [DOI] [PubMed] [Google Scholar]
  5. IRREVERRE F., PIEZ K. A., WOLFF H. L. The separation and determination of cyclic imino acids. J Biol Chem. 1956 Dec;223(2):687–697. [PubMed] [Google Scholar]
  6. KUO M. H., SAUNDERS P. P., BROQUIST H. P. LYSINE BIOSYNTHESIS IN YEAST: A NEW METABOLITE OF ALPHA-AMINOADIPIC ACID. J Biol Chem. 1964 Feb;239:508–515. [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Leistner E., Gupta R. N., Spenser I. D. A general method for the determination of precursor configuration in biosynthetic precursor-product relationships. Derivation of pipecolic acid from D-lysine, and of piperidine alkaloids from L-lysine. J Am Chem Soc. 1973 Jun 13;95(12):4040–4047. doi: 10.1021/ja00793a035. [DOI] [PubMed] [Google Scholar]
  9. MATTOON J. R., HAIGHT R. D. Glutaric acid accumulation by a lysine-requiring yeast mutant. J Biol Chem. 1962 Nov;237:3486–3490. [PubMed] [Google Scholar]
  10. MEISTER A., RADHAKRISHNAN A. N., BUCKLEY S. D. Enzymatic synthesis of L-pipecolic acid and L-proline. J Biol Chem. 1957 Dec;229(2):789–800. [PubMed] [Google Scholar]
  11. MEISTER A. The alpha-keto analogues of arginine, ornithine, and lysine. J Biol Chem. 1954 Feb;206(2):577–585. [PubMed] [Google Scholar]
  12. Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. J Biol Chem. 1971 May 10;246(9):2758–2764. [PubMed] [Google Scholar]
  13. Müller W. U., Leistner E. Conversion of D-lysine via L-pepecolic acid in Neurospora crassa. Z Naturforsch C. 1975 Mar-Apr;30(2):253–262. doi: 10.1515/znc-1975-3-419. [DOI] [PubMed] [Google Scholar]
  14. NUMA S., ISHIMURA Y., NAKAZAWA T., OKAZAKI T., HAYAISHI O. ENZYMIC STUDIES ON THE METABOLISM OF GLUTARATE IN PSEUDOMONAS. J Biol Chem. 1964 Nov;239:3915–3926. [PubMed] [Google Scholar]
  15. Neuberger A., Sanger F. The availability of the acetyl derivatives of lysine for growth. Biochem J. 1943 Oct;37(4):515–518. doi: 10.1042/bj0370515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perfetti R., Campbell R. J., Titus J., Hartline R. A. Catabolism of pipecolate to glutamate in Pseudomonas putida. J Biol Chem. 1972 Jun 25;247(12):4089–4095. [PubMed] [Google Scholar]
  17. ROTHSTEIN M., COOKSEY K. E., GREENBERG D. M. Metabolic conversion of pipecolic acid to alpha-aminoadipic acid. J Biol Chem. 1962 Sep;237:2828–2830. [PubMed] [Google Scholar]
  18. ROTHSTEIN M., HART J. L. PRODUCTS OF LYSINE METABOLISM IN YEAST. Biochim Biophys Acta. 1964 Nov 8;93:439–441. doi: 10.1016/0304-4165(64)90403-9. [DOI] [PubMed] [Google Scholar]
  19. Rothstein M. Intermediates of lysine dissimilation in the yeast, Hansenula saturnus. Arch Biochem Biophys. 1965 Aug;111(2):467–476. doi: 10.1016/0003-9861(65)90210-9. [DOI] [PubMed] [Google Scholar]
  20. SAGISAKA S., SHIMURA K. Studies in lysine biosynthesis. II. Metabolic fate of DL-alpha-aminoadipic acid-6-C14 in T. utilis. J Biochem. 1961 May;49:392–396. doi: 10.1093/oxfordjournals.jbchem.a127315. [DOI] [PubMed] [Google Scholar]
  21. SCHWEET R. S., HOLDEN J. T., LOWY P. H. The metabolism of lysine in Neurospora. J Biol Chem. 1954 Dec;211(2):517–529. [PubMed] [Google Scholar]
  22. Takeda H., Hayaishi O. Crystalline L-lysine oxygenase. J Biol Chem. 1966 Jun 10;241(11):2733–2736. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES