Abstract
An in vitro constructed plasmid, pVH15, consisting of the entire genome of the plasmid ColE1, the tryptophan operon of Escherichia coli, and regions of the bacteriophage PHI80pt190, spontaneously gave rise in E. coli to a mini-ColE1 plasmid consisting of approximately one-half of the ColE1 genome and a small segment of phi80pt190 DNA. This mini-ColE1 plasmid, designated pVH51, has a molecular weight of approximately 2.1 X 10(6) and possesses a single EcoRI restriction site. Heteroduplex analyses showed that about 90% of the pVH51 plasmid hybridizes to about 50% of the ColE1 plasmid. Phenotypically, pVH51 did not produce colicin E1 but conferred immunity to this colicin. The number of mini-ColE1 plasmid molecules per cell was maintained at a four- to fivefold higher level than normal ColE1. A mini-ColE1 hybrid plasmid, designated pML21 and consisting of pVH51 and the kan fragment of plasmid pSC105 inserted at the EcoRI restriction site of mini-ColE1, was maintained at a lower copy number level than pVH51. As in the case of normal ColE1, both pVH51 and pML21 continued to replicate in the presence of chloramphenicol. The promotion of conjugal transfer of pVH51 and pML21 by a self-transmissible plasmid was greatly reduced compared with normal ColE1.
Full text
PDF![447](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bb/233301/871a597d15a2/jbacter00317-0459.png)
![448](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bb/233301/45655bbf7759/jbacter00317-0460.png)
![449](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bb/233301/f5c05bb88bdf/jbacter00317-0461.png)
![450](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bb/233301/cd7a5e6cb728/jbacter00317-0462.png)
![451](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bb/233301/90e8169718a8/jbacter00317-0463.png)
![452](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bb/233301/9eb8586a1c55/jbacter00317-0464.png)
![453](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bb/233301/c2e958b267c7/jbacter00317-0465.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bazaral M., Helinski D. R. Circular DNA forms of colicinogenic factors E1, E2 and E3 from Escherichia coli. J Mol Biol. 1968 Sep 14;36(2):185–194. doi: 10.1016/0022-2836(68)90374-4. [DOI] [PubMed] [Google Scholar]
- Chow L. T., Boyer H. W., Tischer E. G., Goodman H. M. Electron microscopic mapping of the attachment sites on SV40 DNA during lytic infection. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 1):109–117. doi: 10.1101/sqb.1974.039.01.016. [DOI] [PubMed] [Google Scholar]
- Clewell D. B., Helinski D. R. Effect of growth conditions on the formation of the relaxation complex of supercoiled ColE1 deoxyribonucleic acid and protein in Escherichia coli. J Bacteriol. 1972 Jun;110(3):1135–1146. doi: 10.1128/jb.110.3.1135-1146.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clewell D. B. Nature of Col E 1 plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol. 1972 May;110(2):667–676. doi: 10.1128/jb.110.2.667-676.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. N., Chang A. C., Boyer H. W., Helling R. B. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3240–3244. doi: 10.1073/pnas.70.11.3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
- FREDERICQ P. Transduction genetique des proprietes colicinogenes chez Escherichia coli et Shigella sonnei. C R Seances Soc Biol Fil. 1954 Feb;148(3-4):399–402. [PubMed] [Google Scholar]
- Helling R. B., Goodman H. M., Boyer H. W. Analysis of endonuclease R-EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J Virol. 1974 Nov;14(5):1235–1244. doi: 10.1128/jvi.14.5.1235-1244.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hershfield V., Boyer H. W., Yanofsky C., Lovett M. A., Helinski D. R. Plasmid ColEl as a molecular vehicle for cloning and amplification of DNA. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3455–3459. doi: 10.1073/pnas.71.9.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz L., Kingsbury D. T., Helinski D. R. Stimulation by cyclic adenosine monophosphate of plasmid deoxyribonucleic acid replication and catabolite repression of the plasmid deoxyribonucleic acid-protein relaxation complex. J Bacteriol. 1973 May;114(2):577–591. doi: 10.1128/jb.114.2.577-591.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingsbury D. T., Helinski D. R. DNA polymerase as a requirement for the maintenance of the bacterial plasmid colicinogenic factor E1. Biochem Biophys Res Commun. 1970 Dec 24;41(6):1538–1544. doi: 10.1016/0006-291x(70)90562-0. [DOI] [PubMed] [Google Scholar]
- Nomura M., Witten C. Interaction of colicins with bacterial cells. 3. Colicin-tolerant mutations in Escherichia coli. J Bacteriol. 1967 Oct;94(4):1093–1111. doi: 10.1128/jb.94.4.1093-1111.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]