Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jan;129(1):298–304. doi: 10.1128/jb.129.1.298-304.1977

Mismatch excision and possible polarity effects result in preferred deoxyribonucleic acid strand of integration in pneumococcal transformation.

M Roger
PMCID: PMC234927  PMID: 12139

Abstract

Heteroduplex deoxyribonucleic acid molecules having a drug resistance marker on one strand and its wild-type allele on the other have been used as donors in pneumococcal transformation. Opposite strands are not equally effective in producing transformants, and this strand bias is not the same, either in direction or magnitude, for various different genetic markers. Selective excision of mismatched base pairs is probably responsible for the large differences in strand efficiency seen with discriminating (hex+) strains, for when the recipient is nondiscriminating (hex-), and therefore presumably lacking an excision enzyme system, strand bias is drastically reduced or altered. The evidence also indicates that excision occurs after integration, as it is provoked by specific donor-recipient mismatch and not by the same mismatch when introduced within donor heteroduplex molecules. Excision can extend to include a neighboring linked marker which would otherwise not be excised, thus altering its intrinsic strand bias as well as its efficiency in transformation. There is a small bias in relative strand efficiency for some markers, not caused by mismatch excision, which perhaps is due to polarity in the integration process itself.

Full text

PDF
298

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ephrussi-Taylor H., Gray T. C. Genetic studies of recombining DNA in pneumococcal transformation. J Gen Physiol. 1966 Jul;49(6):211–231. doi: 10.1085/jgp.49.6.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ephrussi-Taylor H., Sicard A. M., Kamen R. Genetic Recombination in DNA-Induced Transformation of Pneumococcus. I. the Problem of Relative Efficiency of Transforming Factors. Genetics. 1965 Mar;51(3):455–475. doi: 10.1093/genetics/51.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FOX M. S., ALLEN M. K. ON THE MECHANISM OF DEOXYRIBONUCLEATE INTEGRATION IN PNEUMOCOCCAL TRANSFORMATION. Proc Natl Acad Sci U S A. 1964 Aug;52:412–419. doi: 10.1073/pnas.52.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOX M. S., HOTCHKISS R. D. Initiation of bacterial transformation. Nature. 1957 Jun 29;179(4574):1322–1325. doi: 10.1038/1791322a0. [DOI] [PubMed] [Google Scholar]
  5. Gabor M., Hotchkiss R. D. Differences in rate of phenotypic expression in separated strands of pneumococcal transforming DNA and evidence for change of reading direction. Genetics. 1969;61(1 Suppl):15–25. [PubMed] [Google Scholar]
  6. Gabor M., Hotchkiss R. D. Manifestation of linear organization in molecules of pneumococcal transforming DNA. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1441–1448. doi: 10.1073/pnas.56.5.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HOTCHKISS R. D., EVANS A. H. Analysis of the complex sulfonamide resistance locus of pneumococcus. Cold Spring Harb Symp Quant Biol. 1958;23:85–97. doi: 10.1101/sqb.1958.023.01.012. [DOI] [PubMed] [Google Scholar]
  8. HOTCHKISS R. D., EVANS A. H. Fine structure of a genetically modified enzyme as revealed by relative affinities for modified substrate. Fed Proc. 1960 Dec;19:912–925. [PubMed] [Google Scholar]
  9. Hotchkiss R. D. Toward a general theory of genetic recombination in DNA. Adv Genet. 1971;16:325–348. [PubMed] [Google Scholar]
  10. LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
  11. Lacks S. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics. 1966 Jan;53(1):207–235. doi: 10.1093/genetics/53.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lacks S. Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol. 1970 Feb;101(2):373–383. doi: 10.1128/jb.101.2.373-383.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roger M. Evidence for conversion of heteroduplex transforming DNAs to homoduplexes by recipient pneumococcal cells (DNA strand resolution-DNA repair-bacterial transformation-genetic recombination). Proc Natl Acad Sci U S A. 1972 Feb;69(2):466–470. doi: 10.1073/pnas.69.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shoemaker N. B., Guild W. R. Destruction of low efficiency markers is a slow process occurring at a heteroduplex stage of transformation. Mol Gen Genet. 1974;128(4):283–290. doi: 10.1007/BF00268516. [DOI] [PubMed] [Google Scholar]
  15. Tiraby G., Sicard M. A. Integration efficiencies of spontaneous mutant alleles of amiA locus in pneumococcal transformation. J Bacteriol. 1973 Dec;116(3):1130–1135. doi: 10.1128/jb.116.3.1130-1135.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tiraby J. G., Fox M. S. Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3541–3545. doi: 10.1073/pnas.70.12.3541. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES