Abstract
Polypeptide chains of 10 aminoacyl-transfer ribonucleic acid synthetases (those for arginine, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, phenylalanine, threonine, and valine) have been identified in lysates of Escherichia coli resolved by the O'Farrell two-dimensional gel system. By labeling cells uniformly with [14C]glucose and by measuring the total amounts of these polypeptides by their radioactivity, estimations of the steady-state, molecular amounts of these enzymes were made and compared to the number of ribosomes and elongation factors in these cells. Portions of a reference culture grown on glucose and labeled with [14C]leucine or [35S]sulfate were mixed with four cultures grown in widely different media containing [3H]leucine or [3H]leucine plus [3H]isoleucine. From the isotope ratios of the total protein and of the spots containing the synthetase chains, the chemical amount of each synthetase relative to that of the reference culture was determined. The results, where comparable, show reasonable agreement with enzyme activity measurements. In general, these synthetases each exhibit a positive correlation with growth rate in unrestricted media, indicating a strong tendency for the levels of transfer ribonucleic acid, synthetases, elongation factors, and ribosomes to remain approximately, though not exactly, in balance at different growth rates.
Full text
PDF![378](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/b75eb891b87b/jbacter00308-0394.png)
![379](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/c5c688365b4c/jbacter00308-0395.png)
![380](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/126876340d54/jbacter00308-0396.png)
![381](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/5dbe2903a6a1/jbacter00308-0397.png)
![382](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/e8241395c691/jbacter00308-0398.png)
![383](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/7a1723961a14/jbacter00308-0399.png)
![384](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/5d5cb8e38c55/jbacter00308-0400.png)
![385](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/460bd269f877/jbacter00308-0401.png)
![386](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/42155d156ddc/jbacter00308-0402.png)
![387](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c951/234936/59a3273c295d/jbacter00308-0403.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archibold E. R., Williams L. S. Regulation of synthesis of methionyl-, prolyl-, and threonyl-transfer ribonucleic acid synthetases of Escherichia coli. J Bacteriol. 1972 Mar;109(3):1020–1026. doi: 10.1128/jb.109.3.1020-1026.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal R. M., Reeh S., Pedersen S. Regulation of transcription factor rho and the alpha subunit of RNA polymerase in Escherichia coli B/r. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2285–2288. doi: 10.1073/pnas.73.7.2285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassio D., Mathien Y., Waller J. P. Enhanced level and metabolic regulation of methionyl-transfer ribonucleic acid synthetase in different strains of Escherichia coli K-12. J Bacteriol. 1975 Aug;123(2):580–588. doi: 10.1128/jb.123.2.580-588.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke S. J., Low B., Konigsberg W. Isolation and characterization of a regulatory mutant of an aminoacyl-transfer ribonucleic acid synthetase in Escherichia coli K-12. J Bacteriol. 1973 Mar;113(3):1096–1103. doi: 10.1128/jb.113.3.1096-1103.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis P. P., Bremer H. Macromolecular composition during steady-state growth of Escherichia coli B-r. J Bacteriol. 1974 Jul;119(1):270–281. doi: 10.1128/jb.119.1.270-281.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furano A. V. Content of elongation factor Tu in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4780–4784. doi: 10.1073/pnas.72.12.4780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furano A. V., Wittel F. P. Syntheses of elongation factors Tu and G are under stringent control in Escherichia coli. J Biol Chem. 1976 Feb 10;251(3):898–901. [PubMed] [Google Scholar]
- McKeever W. G., Neidhardt F. C. Growth rate modulation of four aminoacyl-transfer ribonucleic acid synthetases in enteric bacteria. J Bacteriol. 1976 May;126(2):634–645. doi: 10.1128/jb.126.2.634-645.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neihardt F. C., Parker J., McKeever W. G. Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells. Annu Rev Microbiol. 1975;29:215–250. doi: 10.1146/annurev.mi.29.100175.001243. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Paetz W., Nass G. Biochemical and immunological characterization of threonyl-tRNA synthetase of two borrelidin-resistant mutants of Escherichia coli K12. Eur J Biochem. 1973 Jun;35(2):331–337. doi: 10.1111/j.1432-1033.1973.tb02843.x. [DOI] [PubMed] [Google Scholar]
- Parker J., Flashner M., Mckeever W. G., Neidhardt F. C. Metabolic regulation of the arginyl and valyl transfer ribonucleic acid synthetases in bacteria. J Biol Chem. 1974 Feb 25;249(4):1044–1053. [PubMed] [Google Scholar]
- Parker J., Neidhardt F. C. Metabolic regulation of aminoacyl-tRNA synthetase formation in bacteria. Biochem Biophys Res Commun. 1972 Oct 17;49(2):495–501. doi: 10.1016/0006-291x(72)90438-x. [DOI] [PubMed] [Google Scholar]
- Pedersen S., Blumenthal R. M., Reeh S., Russell L. B., Lemaux P., Laursen R. A., Nagarkatti S., Friesen J. D. A mutant of Escherichia coli with an altered elongation factor Tu. Proc Natl Acad Sci U S A. 1976 May;73(5):1698–1701. doi: 10.1073/pnas.73.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pedersen S., Reeh S. V. Analysis of the proteins synthesized in ultraviolet light-irradiated Escherichia coli following infection with the bacteriophages lambdadrifd 18 and lambdadfus-3. Mol Gen Genet. 1976 Mar 30;144(3):339–343. doi: 10.1007/BF00341733. [DOI] [PubMed] [Google Scholar]
- Pizer L. I., McKitrick J., Tosa T. Characterization of a mutant of E. coli with elevated levels of seryl-tRNA synthetase. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1351–1357. doi: 10.1016/0006-291x(72)90615-8. [DOI] [PubMed] [Google Scholar]
- Skjold A. C., Juarez H., Hedgcoth C. Relationships among deoxyribonucleic acid, ribonucleic acid, and specific transfer ribonucleic acids in Escherichia coli 15T - at various growth rates. J Bacteriol. 1973 Jul;115(1):177–187. doi: 10.1128/jb.115.1.177-187.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams L. S., Neidhardt F. C. Synthesis and inactivation of aminoacyl-transfer RNA synthetases during growth of Escherichia coli. J Mol Biol. 1969 Aug 14;43(3):529–550. doi: 10.1016/0022-2836(69)90357-x. [DOI] [PubMed] [Google Scholar]