Abstract
Recurrent events are common in medical research, yet the best ways to measure their occurrence remain controversial. Moreover, the correct statistical techniques to compare the occurrence of such events across populations or treatment groups are not widely known. In both observational studies and randomised clinical trials one natural and intuitive measure of occurrence is the event rate, defined as the number of events (possibly including multiple events per person) divided by the total person-years of experience. This is often a more relevant and clinically interpretable measure of disease burden in a population than considering only the first event that occurs. Appropriate statistical tests to compare such event rates among treatment groups or populations require the recognition that some individuals may be especially likely to experience recurrent events. Straightforward approaches are available to account for this tendency in crude and stratified analyses. Recently developed regression models can appropriately examine the association of several variables with rates of recurrent events.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANSCOMBE F. J. Sampling theory of the negative binomial and logarithmic series distributions. Biometrika. 1950 Dec;37(3-4):358–382. [PubMed] [Google Scholar]
- Altman D. G., Goodman S. N. Transfer of technology from statistical journals to the biomedical literature. Past trends and future predictions. JAMA. 1994 Jul 13;272(2):129–132. [PubMed] [Google Scholar]
- Avorn J., Monane M., Gurwitz J. H., Glynn R. J., Choodnovskiy I., Lipsitz L. A. Reduction of bacteriuria and pyuria after ingestion of cranberry juice. JAMA. 1994 Mar 9;271(10):751–754. doi: 10.1001/jama.1994.03510340041031. [DOI] [PubMed] [Google Scholar]
- Cumming R. G., Kelsey J. L., Nevitt M. C. Methodologic issues in the study of frequent and recurrent health problems. Falls in the elderly. Ann Epidemiol. 1990 Oct;1(1):49–56. doi: 10.1016/1047-2797(90)90018-n. [DOI] [PubMed] [Google Scholar]
- Ederer F. Shall we count numbers of eyes or numbers of subjects? Arch Ophthalmol. 1973 Jan;89(1):1–2. doi: 10.1001/archopht.1973.01000040003001. [DOI] [PubMed] [Google Scholar]
- Fisher E. S., Wennberg J. E., Stukel T. A., Sharp S. M. Hospital readmission rates for cohorts of Medicare beneficiaries in Boston and New Haven. N Engl J Med. 1994 Oct 13;331(15):989–995. doi: 10.1056/NEJM199410133311506. [DOI] [PubMed] [Google Scholar]
- Gail M. H., Santner T. J., Brown C. C. An analysis of comparative carcinogenesis experiments based on multiple times to tumor. Biometrics. 1980 Jun;36(2):255–266. [PubMed] [Google Scholar]
- Glynn R. J., Buring J. E., Manson J. E., LaMotte F., Hennekens C. H. Adherence to aspirin in the prevention of myocardial infarction. The Physicians' Health Study. Arch Intern Med. 1994 Dec 12;154(23):2649–2657. doi: 10.1001/archinte.1994.00420230032005. [DOI] [PubMed] [Google Scholar]
- Glynn R. J., Rosner B. Accounting for the correlation between fellow eyes in regression analysis. Arch Ophthalmol. 1992 Mar;110(3):381–387. doi: 10.1001/archopht.1992.01080150079033. [DOI] [PubMed] [Google Scholar]
- Glynn R. J., Rosner B. Comparison of alternative regression models for paired binary data. Stat Med. 1994 May 30;13(10):1023–1036. doi: 10.1002/sim.4780131005. [DOI] [PubMed] [Google Scholar]
- Glynn R. J., Stukel T. A., Sharp S. M., Bubolz T. A., Freeman J. L., Fisher E. S. Estimating the variance of standardized rates of recurrent events, with application to hospitalizations among the elderly in New England. Am J Epidemiol. 1993 Apr 1;137(7):776–786. doi: 10.1093/oxfordjournals.aje.a116738. [DOI] [PubMed] [Google Scholar]
- Rosner B. Multivariate methods in ophthalmology with application to other paired-data situations. Biometrics. 1984 Dec;40(4):1025–1035. [PubMed] [Google Scholar]
- SPAETH E. B., FRALICK F. B., HUGHES W. F., Jr Estimation of loss of visual efficiency. AMA Arch Ophthalmol. 1955 Sep;54(3):462–468. doi: 10.1001/archopht.1955.00930020468021. [DOI] [PubMed] [Google Scholar]
- Stukel T. A., Glynn R. J., Fisher E. S., Sharp S. M., Lu-Yao G., Wennberg J. E. Standardized rates of recurrent outcomes. Stat Med. 1994 Sep 15;13(17):1781–1791. doi: 10.1002/sim.4780131709. [DOI] [PubMed] [Google Scholar]
- Thall P. F. Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics. 1988 Mar;44(1):197–209. [PubMed] [Google Scholar]
- Windeler J., Lange S. Events per person year--a dubious concept. BMJ. 1995 Feb 18;310(6977):454–456. doi: 10.1136/bmj.310.6977.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeger S. L., Liang K. Y. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986 Mar;42(1):121–130. [PubMed] [Google Scholar]