Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Feb;129(2):1159–1161. doi: 10.1128/jb.129.2.1159-1161.1977

Carnitine Acetyltransferase: Candidate for the Transfer of Acetyl Groups Through the Mitochondrial Membrane of Yeast1

Gunter B Kohlhaw a, Anna Tan-Wilson a,2
PMCID: PMC235061  PMID: 320182

Abstract

On the basis of its specific activity and its affinity for acetyl-coenzyme A, carnitine acetyltransferase appears to be the most likely candidate for acetyl group transfer out of yeast mitochondria.

Full text

PDF
1159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Daikuhara Y., Tsunemi T., Takeda Y. The role of ATP citrate lyase in the transfer of acetyl groups in rat liver. Biochim Biophys Acta. 1968 Apr 16;158(1):51–61. doi: 10.1016/0304-4165(68)90071-8. [DOI] [PubMed] [Google Scholar]
  2. EATON N. R., KLEIN H. P. Studies on the aerobic degradation of glucose by Saccharomyces cerevisiae. Biochem J. 1957 Nov;67(3):373–381. doi: 10.1042/bj0670373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FRITZ I. B. CARNITINE AND ITS ROLE IN FATTY ACID METABOLISM. Adv Lipid Res. 1963;1:285–334. [PubMed] [Google Scholar]
  4. HOLZER H. Regulation of carbohydrate metabolism by enzyme competition. Cold Spring Harb Symp Quant Biol. 1961;26:277–288. doi: 10.1101/sqb.1961.026.01.034. [DOI] [PubMed] [Google Scholar]
  5. Polakis E. S., Bartley W. Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J. 1965 Oct;97(1):284–297. doi: 10.1042/bj0970284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Satyanarayana T., Klein H. P. Studies on the "aerobic" acetyl-coenzyme A synthetase of Saccharomyces cerevisiae: purification, crystallization, and physical properties of the enzyme. Arch Biochem Biophys. 1976 Jun;174(2):480–490. doi: 10.1016/0003-9861(76)90376-3. [DOI] [PubMed] [Google Scholar]
  7. Srere P. A. The citrate enzymes: their structures, mechanisms, and biological functions. Curr Top Cell Regul. 1972;5:229–283. doi: 10.1016/b978-0-12-152805-8.50013-7. [DOI] [PubMed] [Google Scholar]
  8. Tracy J. W., Kohlhaw G. B. Reversible, coenzyme-A-mediated inactivation of biosynthetic condensing enzymes in yeast: a possible regulatory mechanism. Proc Natl Acad Sci U S A. 1975 May;72(5):1802–1806. doi: 10.1073/pnas.72.5.1802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Walter U., Söling H. D. Transfer of acetyl-units through the mitochondrial membrane: Evidence for a pathway different from the citrate pathway. FEBS Lett. 1976 Apr 1;63(2):260–266. doi: 10.1016/0014-5793(76)80107-x. [DOI] [PubMed] [Google Scholar]
  10. Watson J. A., Lowenstein J. M. Citrate and the conversion of carbohydrate into fat. Fatty acid synthesis by a combination of cytoplasm and mitochondria. J Biol Chem. 1970 Nov 25;245(22):5993–6002. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES