Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Mar;129(3):1227–1233. doi: 10.1128/jb.129.3.1227-1233.1977

Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa.

V A Stanisich, P M Bennett, M H Richmond
PMCID: PMC235085  PMID: 403173

Abstract

The nonconjugative plasmid, pVS1, has a molecular weight of 18.5 X 10(6) and confers resistance to sulfonamides and to mercuric ions. In Pseudomonas aeruginosa PAO, the transfer can be mobilized by a variety of conjugative plasmids, and the process does not require a functional recombination system in the donor. Hybrid plasmids that arise by the relocation of the mer gene onto the mobilizing plasmid can be isolated readily, and, as far as can be determined, these hybrids retain the genome of the conjugative plasmid in toto. The relocation of mer occurs by a Rec-independent process and leads to a constant increase (about 6 X 10(6) daltons) in the size of the recipient plasmid. This suggests that the mer gene in pVS1 is located on a translocation unit, designated Tn501, of a molecular weight of about 6 X 10(6). The translocation of Tn501 into RP1 is not usually associated with the loss of any known plasmid-mediated function, but transfer-defective or tetracycline-sensitive derivatives do occur at frequencies of about 4%, whereas carbenicillin-sensitive or kanamycin-sensitive variants arise with a frequency of about 0.2% each. It seems therefore that the integration of Tn501 can occur at any one of a minimum of five sites in RP1.

Full text

PDF
1227

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achtman M., Willetts N., Clark A. J. Beginning a genetic analysis of conjugational transfer determined by the F factor in Escherichia coli by isolation and characterization of transfer-deficient mutants. J Bacteriol. 1971 May;106(2):529–538. doi: 10.1128/jb.106.2.529-538.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barth P. T., Datta N., Hedges R. W., Grinter N. J. Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J Bacteriol. 1976 Mar;125(3):800–810. doi: 10.1128/jb.125.3.800-810.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beard J. P., Howe T. G., Richmond M. H. Purification of sex pili from Escherichia coli carrying a derepressed F-like R factor. J Bacteriol. 1972 Sep;111(3):814–820. doi: 10.1128/jb.111.3.814-820.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett P. M., Richmond M. H. Translocation of a discrete piece of deoxyribonucleic acid carrying an amp gene between replicons in Eschericha coli. J Bacteriol. 1976 Apr;126(1):1–6. doi: 10.1128/jb.126.1.1-6.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berg D. E., Davies J., Allet B., Rochaix J. D. Transposition of R factor genes to bacteriophage lambda. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3628–3632. doi: 10.1073/pnas.72.9.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandler P. M., Krishnapillai V. Isolation and properties of recombination-deficient mutants of Pseudomonas aeruginosa. Mutat Res. 1974 Apr;23(1):15–23. doi: 10.1016/0027-5107(74)90155-9. [DOI] [PubMed] [Google Scholar]
  7. Clowes R. C. Molecular structure of bacterial plasmids. Bacteriol Rev. 1972 Sep;36(3):361–405. doi: 10.1128/br.36.3.361-405.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gottesman M. M., Rosner J. L. Acquisition of a determinant for chloramphenicol resistance by coliphage lambda. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5041–5045. doi: 10.1073/pnas.72.12.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hedges R. W., Jacob A. E. Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet. 1974;132(1):31–40. doi: 10.1007/BF00268228. [DOI] [PubMed] [Google Scholar]
  11. Heffron F., Sublett R., Hedges R. W., Jacob A., Falkow S. Origin of the TEM-beta-lactamase gene found on plasmids. J Bacteriol. 1975 Apr;122(1):250–256. doi: 10.1128/jb.122.1.250-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holloway B. W., Rossiter H., Burgess D., Dodge J. Aeruginocin tolerant mutants of Pseudomonas aeruginosa. Genet Res. 1973 Dec;22(3):239–253. doi: 10.1017/s0016672300013069. [DOI] [PubMed] [Google Scholar]
  13. Humphreys G. O., Willshaw G. A., Anderson E. S. A simple method for the preparation of large quantities of pure plasmid DNA. Biochim Biophys Acta. 1975 Apr 2;383(4):457–463. doi: 10.1016/0005-2787(75)90318-4. [DOI] [PubMed] [Google Scholar]
  14. Jacoby G. A. Properties of R plasmids determining gentamicin resistance by acetylation in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1974 Sep;6(3):239–252. doi: 10.1128/aac.6.3.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kleckner N., Chan R. K., Tye B. K., Botstein D. Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J Mol Biol. 1975 Oct 5;97(4):561–575. doi: 10.1016/s0022-2836(75)80059-3. [DOI] [PubMed] [Google Scholar]
  16. Krishnapillai V. The use of bacteriophages for differentiating plasmids of Pseudomonas aeruginosa. Genet Res. 1974 Jun;23(3):327–334. doi: 10.1017/s0016672300014968. [DOI] [PubMed] [Google Scholar]
  17. Loutit J. S. Investigation of the mating system of Pseudomonas aeruginosa strain I. VI. Mercury resistance associated with the sex factor (FP). Genet Res. 1970 Oct 2;16(2):179–184. doi: 10.1017/s0016672300002408. [DOI] [PubMed] [Google Scholar]
  18. Morgan T. M., Stanisich V. A. Characterization and properties of phage B33, a female-specific phage of Pseudomonas aeruginosa. J Gen Virol. 1976 Jan;30(1):73–79. doi: 10.1099/0022-1317-30-1-73. [DOI] [PubMed] [Google Scholar]
  19. Novick R. P., Clowes R. C., Cohen S. N., Curtiss R., 3rd, Datta N., Falkow S. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev. 1976 Mar;40(1):168–189. doi: 10.1128/br.40.1.168-189.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pemberton J. M., Clark A. J. Detection and characterization of plasmids in Pseudomonas aeruginosa strain PAO. J Bacteriol. 1973 Apr;114(1):424–433. doi: 10.1128/jb.114.1.424-433.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pemberton J. M. F116: a DNA bacteriophage specific for the pili of Pseudomonas aeruginosa strain PAO. Virology. 1973 Oct;55(2):558–560. doi: 10.1016/0042-6822(73)90203-1. [DOI] [PubMed] [Google Scholar]
  22. Pemberton J. M., Holloway B. W. A new sex factor of Pseudomonas aeruginosa. Genet Res. 1973 Jun;21(3):263–272. doi: 10.1017/s0016672300013458. [DOI] [PubMed] [Google Scholar]
  23. Reeves P., Willetts N. Plasmid specificity of the origin of transfer of sex factor F. J Bacteriol. 1974 Oct;120(1):125–130. doi: 10.1128/jb.120.1.125-130.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reif H. J., Saedler H. IS1 is involved in deletion formation in the gal region of E. coli K12. Mol Gen Genet. 1975;137(1):17–28. doi: 10.1007/BF00332538. [DOI] [PubMed] [Google Scholar]
  25. SLAYTER H. S., HOLLOWAY B. W., HALL C. E. THE STRUCTURE OF PSEUDOMONAS AERUGINOSA PHAGES B3, E79, AND F116. J Ultrastruct Res. 1964 Oct;11:274–281. doi: 10.1016/s0022-5320(64)90032-2. [DOI] [PubMed] [Google Scholar]
  26. Shahrabadi M. S., Bryan L. E., Van Den Elizen H. M. Further properties of P-2 R-factors of Pseudomonas aeruginosa and their relationship to other plasmid groups. Can J Microbiol. 1975 May;21(5):592–605. doi: 10.1139/m75-086. [DOI] [PubMed] [Google Scholar]
  27. Stanisich V. A., Bennett P. M., Richmond M. H. Properties of derivatives of the Pseudomonas plasmid pVS1 that have inherited carbenicillin resistance from RP1. J Bacteriol. 1977 Mar;129(3):1653–1656. doi: 10.1128/jb.129.3.1653-1656.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stanisich V. A., Bennett P. M. The properties of hybrids formed between the P-group plasmid RP1 and various plasmids from Pseudomonas aeruginosa. Mol Gen Genet. 1976 Dec 8;149(2):217–223. doi: 10.1007/BF00332892. [DOI] [PubMed] [Google Scholar]
  29. Stanisich V. A., Holloway B. W. A mutant sex factor of Pseudomonas aeruginosa. Genet Res. 1972 Feb;19(1):91–108. doi: 10.1017/s0016672300014294. [DOI] [PubMed] [Google Scholar]
  30. Stanisich V. A. Interaction between an R factor and an element conferring resistance to mercuric ions in Pseudomonas aeruginosa. Mol Gen Genet. 1974 Feb 6;128(3):201–212. doi: 10.1007/BF00267109. [DOI] [PubMed] [Google Scholar]
  31. Stanisich V. A., Ortiz J. M. Similarities between plasmids of the P-incompatibility group derived from different bacterial genera. J Gen Microbiol. 1976 Jun;94(2):281–289. doi: 10.1099/00221287-94-2-281. [DOI] [PubMed] [Google Scholar]
  32. Stanisich V. A. The properties and host range of male-specific bacteriophages of Pseudomonas aeruginosa. J Gen Microbiol. 1974 Oct;84(2):332–342. doi: 10.1099/00221287-84-2-332. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES