Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Apr;130(1):445–454. doi: 10.1128/jb.130.1.445-454.1977

Energy-dependent incorporation of sphingolipid precursors and fatty acids in Bacteriodes melaninogenicus.

M Lev, A F Milford
PMCID: PMC235223  PMID: 15984

Abstract

Washed cells of Bacteroides melaninogenicus are unable to incorporate the sphingolipid precursor 3-ketodihydrosphingosine (3KDS) or dihydrosphingosine into the complete sphingolipids ceramide phosphorylethanolamine (CPE) and ceramide phosphorylglycerol (CPG), whereas growing cultures are able to do so. This result suggested that an energy source was required by washed cells to initiate the incorporation of 3KDS. Investigation of a number of energy sources for B. melaninogenicus showed that glutamine was active in driving the incorporation of 3KDS. This system shows saturation kinetics. Besides glutamine, only asparagine and reduced nicotinamide adenine dinucleotide (NADH) are effective; glutamate and other compounds are inactive. The glutamine-driven system is sensitive to 2,4-dinitrophenol, azide, N,N'- dicyclohexylcarbodiimide, and carbonyl cyanide m-chlorophenylhydrazone. Asparagine plus NADH shows a synergistic effect in stimulating the incorporation of 3KDS into CPE and CPG in washed cells. However, glutamine plus NADH and glutamine plus asparagine show no such synergy. The cytochrome-free mutant of B. melaninogenicus, strain S, incorporates 3KDS in a manner similar to the parent strain when glutamine is used to drive the reaction; NADH or asparagine, however, are ineffective when used with strain S. Vitamin K-depleted cells of B. melaninogenicus are similar to vitamin K-grown cells, when glutamine or NADH is used to drive the 3KDS incorporation. Glutamine and NADH are also effective in stimulating the incorporation of palmitate and acetate by washed cells of B, melaninogenicus. Increased incorporation of these fatty acids into CPE, CPG, 3KDS, and other phospholipids is significantly increased by the presence of glutamine or NADH. Thus, energization of the membrane of B. melaninogenicus by glutamine or the electron transport system by NADH or asparagine is required for sphingolipid and other phospholipid synthesis. The relationship of this energization to possible transport of sphingolipid precursors is discussed.

Full text

PDF
445

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Bell R. M., Mavis R. D., Osborn M. J., Vagelos P. R. Enzymes of phospholipid metabolism: localization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium. Biochim Biophys Acta. 1971 Dec 3;249(2):628–635. doi: 10.1016/0005-2736(71)90144-1. [DOI] [PubMed] [Google Scholar]
  3. Boonstra J., Huttunen M. T., Konings W. N. Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem. 1975 Sep 10;250(17):6792–6798. [PubMed] [Google Scholar]
  4. Booth I. R., Morris J. G. Proton-motive force in the obligately anaerobic bacterium Clostridium pasteurianum: a role in galactose and gluconate uptake. FEBS Lett. 1975 Nov 15;59(2):153–157. doi: 10.1016/0014-5793(75)80364-4. [DOI] [PubMed] [Google Scholar]
  5. Calmes R., Deal S. J. Fatty acid transport by the lipophilic bacterium Nocardia asteroides. J Bacteriol. 1976 May;126(2):751–757. doi: 10.1128/jb.126.2.751-757.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demel R. A., Wirtz K. W., Kamp H. H., Geurts van Kessel W. S., van Deenen L. L. Phosphatidylcholine exchange protein from beef liver. Nat New Biol. 1973 Nov 28;246(152):102–105. doi: 10.1038/newbio246102a0. [DOI] [PubMed] [Google Scholar]
  7. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  8. Frerman F. E., Bennett W. Studies on the uptake of fatty acids by Escherichia coli. Arch Biochem Biophys. 1973 Nov;159(1):434–443. doi: 10.1016/0003-9861(73)90471-2. [DOI] [PubMed] [Google Scholar]
  9. Gaver R. C., Sweeley C. C. Chemistry and metabolism of sphingolipids. 3-Oxo derivatives of N-acetylsphingosine and N-acetyldihydrosphingosine. J Am Chem Soc. 1966 Aug 5;88(15):3643–3647. doi: 10.1021/ja00967a032. [DOI] [PubMed] [Google Scholar]
  10. Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaback H. R. Transport studies in bacterial membrane vesicles. Science. 1974 Dec 6;186(4167):882–892. doi: 10.1126/science.186.4167.882. [DOI] [PubMed] [Google Scholar]
  12. Klein K., Steinberg R., Fiethen B., Overath P. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem. 1971 Apr;19(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x. [DOI] [PubMed] [Google Scholar]
  13. Konings W. N., Boonstra J., De Vries W. Amino acid transport in membrane vesicles of obligately anaerobic Veillonella alcalescens. J Bacteriol. 1975 Apr;122(1):245–249. doi: 10.1128/jb.122.1.245-249.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Konings W. N., Kaback H. R. Anaerobic transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3376–3381. doi: 10.1073/pnas.70.12.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kunsman J. E., Caldwell D. R. Comparison of the sphingolipid content of rumen Bacteroides species. Appl Microbiol. 1974 Dec;28(6):1088–1089. doi: 10.1128/am.28.6.1088-1089.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LEV M. The growth-promoting activity of compounds of the vitamin K group and analogues for a rumen strain of Fusiformis nigrescens. J Gen Microbiol. 1959 Jun;20(3):697–703. doi: 10.1099/00221287-20-3-697. [DOI] [PubMed] [Google Scholar]
  17. LaBach J. P., White D. C. Identification of ceramide phosphorylethanolamine and ceramide phosphorylglycerol in the lipids of an anaerobic bacterium. J Lipid Res. 1969 Sep;10(5):528–534. [PubMed] [Google Scholar]
  18. Lev M., Keudell K. C., Milford A. F. Succinate as a growth factor for Bacteroides melaninogenicus. J Bacteriol. 1971 Oct;108(1):175–178. doi: 10.1128/jb.108.1.175-178.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lev M., Milford A. F. Apparatus for metabolic studies with anaerobes. Appl Microbiol. 1971 Mar;21(3):555–556. doi: 10.1128/am.21.3.555-556.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lev M., Milford A. F. Effect of vitamin K depletion and restoration on sphingolipid metabolism in Bacteroides melaninogenicus. J Lipid Res. 1972 May;13(3):364–370. [PubMed] [Google Scholar]
  21. Lev M., Milford A. F. Sensitivity of a Bacteroides melaninogenicus strain to monosaccharides: effect on enzyme induction. J Bacteriol. 1975 Jan;121(1):152–159. doi: 10.1128/jb.121.1.152-159.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lev M. Vitamin K deficiency in Fusiformis nigrescens. I. Influence on whole cells and cell envelope characteristics. J Bacteriol. 1968 Jun;95(6):2317–2324. doi: 10.1128/jb.95.6.2317-2324.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morell P., Radin N. S. Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A's by brain microsomes. J Biol Chem. 1970 Jan 25;245(2):342–350. [PubMed] [Google Scholar]
  24. Ray T. K., Cronan J. E. Mechanism of phospholipid biosynthesis in Escherichia coli: acyl-CoA synthetase is not required for the incorporation of intracellular free fatty acids into phospholipid. Biochem Biophys Res Commun. 1976 Mar 22;69(2):506–513. doi: 10.1016/0006-291x(76)90550-7. [DOI] [PubMed] [Google Scholar]
  25. Rizza V., Tucker A. N., White D. C. Lipids of Bacteroides melaninogenicus. J Bacteriol. 1970 Jan;101(1):84–91. doi: 10.1128/jb.101.1.84-91.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SRIBNEY M., KENNEDY E. P. The enzymatic synthesis of sphingomyelin. J Biol Chem. 1958 Dec;233(6):1315–1322. [PubMed] [Google Scholar]
  27. Stoffel W., Dittmar K., Wilmes R. Sphingolipid metabolism in Bacteroideaceae. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):715–725. doi: 10.1515/bchm2.1975.356.s1.715. [DOI] [PubMed] [Google Scholar]
  28. White D. A., Albright F. R., Lennarz W. J., Schnaitman C. A. Distribution of phospholipid-synthesizing enzymes in the wall and membrane subfractions of the envelope of Escherichia coli. Biochim Biophys Acta. 1971 Dec 3;249(2):636–642. doi: 10.1016/0005-2736(71)90145-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES