Abstract
Rhodopseudomonas capsulata possesses the enzymes of both the "phosphorylated" and the "non-phosphorylated" pathways of serine biosynthesis. Certain mutants with lesions in the phosphorylated pathway are serine-glycine auxotrophs, though they still produce enzymes of the non-phosphorylated sequence. These results indicate that the phosphorylated pathway is essential for the synthesis of serine and glycine in R. capsulata under the condtions tested.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Germano G. J., Anderson K. E. Serine biosynthesis in Desulfovibrio desulfuricans. J Bacteriol. 1969 Sep;99(3):893–894. doi: 10.1128/jb.99.3.893-894.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harder W., Quayle J. R. Aspects of glycine and serine biosynthesis during growth of Pseudomonas AM1 on C compounds. Biochem J. 1971 Mar;121(5):763–769. doi: 10.1042/bj1210763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harder W., Quayle J. R. The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochem J. 1971 Mar;121(5):753–762. doi: 10.1042/bj1210753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heptinstall J., Quayle J. R. Pathways leading to and from serine during growth of Pseudomonas AM1 on C1 compounds or succinate. Biochem J. 1970 Apr;117(3):563–572. doi: 10.1042/bj1170563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lugtenberg E. J. Studies on Escherichia coli enzymes involved in the synthesis of uridine diphosphate-N-acetyl-muramyl-pentapeptide. J Bacteriol. 1972 Apr;110(1):26–34. doi: 10.1128/jb.110.1.26-34.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
- Pizer L. I., Ponce-de-Leon M., Michalka J. Serine biosynthesis and regulation in Haemophilus influenzae. J Bacteriol. 1969 Mar;97(3):1357–1361. doi: 10.1128/jb.97.3.1357-1361.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ponce-de-Leon M. M., Pizer L. I. Serine biosynthesis and its regulation in Bacillus subtilis. J Bacteriol. 1972 Jun;110(3):895–904. doi: 10.1128/jb.110.3.895-904.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STROMINGER J. L., BIRGE C. H. NUCLEOTIDE ACCUMULATION INDUCED IN STAPHYLOCOCCUS AUREUS BY GLYCINE. J Bacteriol. 1965 Apr;89:1124–1127. doi: 10.1128/jb.89.4.1124-1127.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt L. S., Sojka G. A. Enzymes of serine biosynthesis in Rhodopseudomonas capsulata. Arch Biochem Biophys. 1973 Nov;159(1):475–482. doi: 10.1016/0003-9861(73)90477-3. [DOI] [PubMed] [Google Scholar]
- Sojka G. A., Gest H. Integration of energy conversion and biosynthesis in the photosynthetic bacterium Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1486–1493. doi: 10.1073/pnas.61.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- UMBARGER H. E., UMBARGER M. A., SIU P. M. BIOSYNTHESIS OF SERINE IN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Jun;85:1431–1439. doi: 10.1128/jb.85.6.1431-1439.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- UMBARGER H. E., UMBARGER M. A. The biosynthetic pathway of serine in salmonella typhimurium. Biochim Biophys Acta. 1962 Jul 30;62:193–195. doi: 10.1016/0006-3002(62)90515-2. [DOI] [PubMed] [Google Scholar]
- Ulane R., Ogur M. Genetic and physiological control of serine and glycine biosynthesis in Saccharomyces. J Bacteriol. 1972 Jan;109(1):34–43. doi: 10.1128/jb.109.1.34-43.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
