Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 May;130(2):793–804. doi: 10.1128/jb.130.2.793-804.1977

Regulation of accumulation and turnover of an inducible glutamate dehydrogenase in synchronous cultures of Chlorella.

D W Israel, R M Gronostajski, A T Yeung, R R Schmidt
PMCID: PMC235283  PMID: 45486

Abstract

Earlier studies indicated that the gene of an ammonium-inducible glutamate dehydrogenase (GDH) was inducible throughout the cell cycle and was expressible shortly after replication early in the S-phase in synchronous Chlorella cells growing at a rate of 13% per h in the absence of inducer. In the present study, synchronous cells cultured at the same growth rate in the continuous presence of inducer accumulated this enzyme in a linear manner, with a positive rate change observed late instead of early in the S-phase. At a growth rate of 26% per h, the positive rate change appeared to be displaced to 1.5 h before the S-phase in the next cell cycle. With 2'-deoxyadenosine, an in vivo inhibitor of deoxyribonucleic acid (DNA) synthesis, the magnitude of the positive rate change was shown to be proportional to the relative increase in DNA in the previous cell cycle. Collectively, these data support the idea that expression of newly replicated genes of this enzyme can be delayed into the subsequent cell cycle in cells in the continuous presence of inducer. Studies with cycloheximide indicated that the inducible GDH and another GDH isozyme were stable in fully induced cells in the absence of protein synthesis. However, after ammonium was removed from the culture medium, the activity of the inducible GDH decreased rapidly in vivo, with a half-time of 5 to 10 min at 38.5 degrees C, whereas the rate of accumulation of the other GDH isozyme did not change. Addition of cycloheximide, at the time of inducer removal, prevented this loss in activity of the inducible GDH. The inability to rescue the activity of the inducible GDH, by readdition of ammonium during the deinduction period, indicates that this enzyme probably underwent irreversible inactivation and/or proteolytic degradation.

Full text

PDF
793

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auricchio F., Martin D., Jr, Tompkins G. Control of degradation and synthesis of induced tyrosine aminotransferase studied in hepatoma cells in culture. Nature. 1969 Nov 22;224(5221):806–808. doi: 10.1038/224806b0. [DOI] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baechtel F. S., Hopkins H. A., Schmidt R. R. Continuous inducibility of isocitrate lyase during the cell cycle of the eucaryote Chlorella. Biochim Biophys Acta. 1970 Sep 17;217(1):216–219. doi: 10.1016/0005-2787(70)90144-9. [DOI] [PubMed] [Google Scholar]
  4. Carter B. L., Halvorson H. O. An evaluation of the oscillatory repression model of periodic enzyme synthesis in yeast. Exp Cell Res. 1973 Jan;76(1):152–158. doi: 10.1016/0014-4827(73)90430-8. [DOI] [PubMed] [Google Scholar]
  5. Darnell J. E., Jelinek W. R., Molloy G. R. Biogenesis of mRNA: genetic regulation in mammalian cells. Science. 1973 Sep 28;181(4106):1215–1221. doi: 10.1126/science.181.4106.1215. [DOI] [PubMed] [Google Scholar]
  6. Epstein D., Elias-Bishko S., Hershko A. Requirement for protein synthesis in the regulation of protein breakdown in cultured hepatoma cells. Biochemistry. 1975 Nov 18;14(23):5199–5204. doi: 10.1021/bi00694a028. [DOI] [PubMed] [Google Scholar]
  7. Goodwin B. C. An entrainment model for timed enzyme syntheses in bacteria. Nature. 1966 Jan 29;209(5022):479–481. doi: 10.1038/209479a0. [DOI] [PubMed] [Google Scholar]
  8. Granner D. K., Hayashi S., Thompson E. B., Tomkins G. M. Stimulation of tyrosine aminotransferase synthesis by dexamethasone phosphate in cell culture. J Mol Biol. 1968 Jul 28;35(2):291–301. doi: 10.1016/s0022-2836(68)80025-7. [DOI] [PubMed] [Google Scholar]
  9. Hare T. A., Schmidt R. R. Continuous-dilution method for the mass culture of synchronized cells. Appl Microbiol. 1968 Mar;16(3):496–499. doi: 10.1128/am.16.3.496-499.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hopkins H. A., Flora J. B., Schimidt R. R. Periodic DNA accumulation during the cell cycle of a thermophilic strain of Chlorella pyrenoidosa. Arch Biochem Biophys. 1972 Dec;153(2):845–849. doi: 10.1016/0003-9861(72)90407-9. [DOI] [PubMed] [Google Scholar]
  11. Hopkins H. A., Sitz T. O., Schmidt R. R. Selection of synchronous Chlorella cells by centrifugation to equilibrium in aqueous Ficoll. J Cell Physiol. 1970 Oct;76(2):231–233. doi: 10.1002/jcp.1040760214. [DOI] [PubMed] [Google Scholar]
  12. Horgen P. A., Griffin D. H. Specific inhibitors of the three RNA polymerases from the aquatic fungus Blastocladiella emersonii. Proc Natl Acad Sci U S A. 1971 Feb;68(2):338–341. doi: 10.1073/pnas.68.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacquet M., Kepes A. The step sensitive to catabolite repression and its reversal by 3'-5' cyclic AMP during induced synthesis of beta-galactosidase in E. coli. Biochem Biophys Res Commun. 1969 Jul 7;36(1):84–92. doi: 10.1016/0006-291x(69)90653-6. [DOI] [PubMed] [Google Scholar]
  14. Knutsen G. Induction of nitrite reductase in synchronized cultures of Chlorella pyrenoidosa. Biochim Biophys Acta. 1965 Jul 15;103(3):495–502. doi: 10.1016/0005-2787(65)90142-5. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Losada M., Paneque A., Aparicio P. J., Vega J. M., Cárdenas J., Herrera J. Inactivation and repression by ammonium of the nitrate reducing system in chlorella. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1009–1015. doi: 10.1016/0006-291x(70)90340-2. [DOI] [PubMed] [Google Scholar]
  17. McKnight G. S., Pennequin P., Schimke R. T. Induction of ovalbumin mRNA sequences by estrogen and progesterone in chick oviduct as measured by hybridization to complementary DNA. J Biol Chem. 1975 Oct 25;250(20):8105–8110. [PubMed] [Google Scholar]
  18. Mitchison J. M., Creanor J. Induction synchrony in the fission yeast. Schizosaccharomyces pombe. Exp Cell Res. 1971 Aug;67(2):368–374. doi: 10.1016/0014-4827(71)90421-6. [DOI] [PubMed] [Google Scholar]
  19. Molloy G. R., Schmidt R. R. Studies on the regulation of ribulose-1,5-diphosphate carboxylase synthesis during the cell cycle ofthe eucaryote chlorella. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1125–1133. doi: 10.1016/0006-291x(70)90911-3. [DOI] [PubMed] [Google Scholar]
  20. Molloy G. R., Sitz T. O., Schmidt R. R. Evidence for continuous availability of the phosphoribosylglycinamide synthetase structural gene for transcription during the cell cycle of the eucaryote Chlorella. J Biol Chem. 1973 Mar 25;248(6):1970–1975. [PubMed] [Google Scholar]
  21. Reichard P. Control of deoxyribonucleotide synthesis in vitro and in vivo. Adv Enzyme Regul. 1972;10:3–16. doi: 10.1016/0065-2571(72)90003-9. [DOI] [PubMed] [Google Scholar]
  22. SOROKIN C., MYERS J. The course of respiration during the life cycle of Chlorella cells. J Gen Physiol. 1957 Mar 20;40(4):579–592. doi: 10.1085/jgp.40.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
  24. Schimke R. T. Methods for analysis of enzyme synthesis and degradation in animal tissues. Methods Enzymol. 1975;40:241–266. doi: 10.1016/s0076-6879(75)40020-9. [DOI] [PubMed] [Google Scholar]
  25. Schmidt R. R. Continuous dilution culture system for studies on gene-enzyme regulation in synchronous cultures of plant cells. In Vitro. 1974 Nov-Dec;10(5-6):306–320. doi: 10.1007/BF02615312. [DOI] [PubMed] [Google Scholar]
  26. Schutt H., Holzer H. Biological function of the ammonia-induced inactivation of glutamine synthetase in Escherichia coli. Eur J Biochem. 1972 Mar 15;26(1):68–72. doi: 10.1111/j.1432-1033.1972.tb01740.x. [DOI] [PubMed] [Google Scholar]
  27. Sebastian J., Carter B. L., Halvorson H. O. Induction capacity of enzyme synthesis during the cell cycle of Saccharomyces cerevisiae. Eur J Biochem. 1973 Sep 3;37(3):516–522. doi: 10.1111/j.1432-1033.1973.tb03013.x. [DOI] [PubMed] [Google Scholar]
  28. Shapiro D. J., Schimke R. T. Immunochemical isolation and characterization of ovalbumin messenger ribonucleic acid. J Biol Chem. 1975 Mar 10;250(5):1759–1764. [PubMed] [Google Scholar]
  29. Shapiro D. J., Taylor J. M., McKnight G. S., Palacios R., Gonzalez C., Kiely M. L., Schimke R. T. Isolation of hen oviduct ovalbumin and rat live albumin polysomes by indirect immunoprecipitation. J Biol Chem. 1974 Jun 25;249(12):3665–3671. [PubMed] [Google Scholar]
  30. Sissons C. H., Mitchison J. M., Creanor J. Enzyme synthesis and potential during induction synchrony in the fission yeast Schizosaccharomyces pombe. Exp Cell Res. 1973 Nov;82(1):63–72. doi: 10.1016/0014-4827(73)90245-0. [DOI] [PubMed] [Google Scholar]
  31. Sitz T. O., Molloy G. R., Schmidt R. R. Evidence for turnover of ribulose-1,5-diphosphate carboxylase and continuous transcription of its structural gene throughout the cell cycle of the eucaryote Chlorella. Biochim Biophys Acta. 1973 Aug 10;319(1):103–108. doi: 10.1016/0005-2787(73)90045-2. [DOI] [PubMed] [Google Scholar]
  32. Talley D. J., White L. H., Schmidt R. R. Evidence for NADH- and NADPH-specific isozymes of glutamate dehydrogenase and the continuous inducibility of the NADPH-specific isozyme throughout the cell cycle of the eucaryote Chlorella. J Biol Chem. 1972 Dec 25;247(24):7927–7935. [PubMed] [Google Scholar]
  33. Tauro P., Halvorson H. O. Effect of gene position on the timing of enzyme synthesis in synchronous cultures of yeast. J Bacteriol. 1966 Sep;92(3):652–661. doi: 10.1128/jb.92.3.652-661.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vassef A. A., Flora J. B., Weeks J. G., Bibbs B. S., Schmidt R. R. The effects of enzyme synthesis and stability and of deoxyribonucleic acid replication on the cellular levels of aspartate transcarbamylase during the cell cycle of eucaryote Chlorella. J Biol Chem. 1973 Mar 25;248(6):1976–1985. [PubMed] [Google Scholar]
  35. Wanka F. Decreased DNA synthesis in mammalian cells after exposure to deoxyadenosine. Exp Cell Res. 1974 Apr;85(2):409–414. doi: 10.1016/0014-4827(74)90143-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES