Abstract
A precursor of 5S ribosomal ribonucleic acid (rRNA) from Bacillus subtilis was cleaved by ribonuclease (RNase) M5 in cell-free extracts from B. subtilis to yield the mature 5S rRNA plus RNA fragments derived from both termini of the precursor. The released, mature 5S rRNA was stable in these extracts; however, as occurred in vivo, the precursor-specific fragments were rapidly and completely destroyed. Such destruction was not observed in the presence of partially purified RNase M5, so fragment scavenging was not effected by the maturation nuclease itself. The selective destruction of the precursor-specific fragments was shown to occur through a 3'-exonucleolytic process with the release of nucleoside 5'-monophosphates; the responsible activity therefore had the character of RNAse II. Consideration of the primary and probable secondary structures of the precursor-specific fragments and mature 5S rRNA suggested that involvement of 3' termini in tight secondary structure may confer protection against the scavenging activity.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apirion D. The fate of mRNA and rRNA in Escherichia coli. Brookhaven Symp Biol. 1975 Jul;(26):286–306. [PubMed] [Google Scholar]
- Chaney S. G., Boyer P. D. Incorporation of water oxygens into intracellular nucleotides and RNA. II. Predominantly hydrolytic RNA turnover in Escherichia coli. J Mol Biol. 1972 Mar 14;64(3):581–591. doi: 10.1016/0022-2836(72)90084-8. [DOI] [PubMed] [Google Scholar]
- Deutscher M. P. Synthesis and functions of the -C-C-A terminus of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1973;13:51–92. doi: 10.1016/s0079-6603(08)60100-2. [DOI] [PubMed] [Google Scholar]
- Duffy J. J., Chaney S. G., Boyer P. D. Incorporation of water oxygens into intracellular nucleotides and RNA. I. Predominantly non-hydrolytic RNA turnover in Bacillus subtilis. J Mol Biol. 1972 Mar 14;64(3):565–579. doi: 10.1016/0022-2836(72)90083-6. [DOI] [PubMed] [Google Scholar]
- FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
- HAYASHI M., SPIEGELMAN S. The selective synthesis of informational RNA in bacteria. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1564–1580. doi: 10.1073/pnas.47.10.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marotta C. A., Varricchio F., Smith I., Weissman S. M. The primary structure of Bacillus subtilis and Bacillus stearothermophilus 5 S ribonucleic acids. J Biol Chem. 1976 May 25;251(10):3122–3127. [PubMed] [Google Scholar]
- Pace N. R., Pato M. L., McKibbin J., Radcliffe C. W. Precursors of 5 S ribosomal RNA in Bacillus subtilis. J Mol Biol. 1973 Apr 25;75(4):619–631. doi: 10.1016/0022-2836(73)90296-9. [DOI] [PubMed] [Google Scholar]
- Pace N. R. Structure and synthesis of the ribosomal ribonucleic acid of prokaryotes. Bacteriol Rev. 1973 Dec;37(4):562–603. doi: 10.1128/br.37.4.562-603.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEKIGUCHI M., COHEN S. S. The selective degradation of phage-induced ribonucleic acid by polynucleotide phosphorylase. J Biol Chem. 1963 Jan;238:349–356. [PubMed] [Google Scholar]
- SPAHR P. F. PURIFICATION AND PROPERTIES OF RIBONUCLEASE II FROM ESCHERICHIA COLI. J Biol Chem. 1964 Nov;239:3716–3726. [PubMed] [Google Scholar]
- Singer M. F., Tolbert G. Purification and properties of a potassium-activated phosphodiesterase (RNAase II) from Escherichia coli. Biochemistry. 1965 Jul;4(7):1319–1330. doi: 10.1021/bi00883a016. [DOI] [PubMed] [Google Scholar]
- Sogin M. L., Pace N. R. In vitro maturation of precursors of 5S ribosomal RNA from Bacillus subtilis. Nature. 1974 Dec 13;252(5484):598–600. doi: 10.1038/252598a0. [DOI] [PubMed] [Google Scholar]
- Sogin M. L., Pace N. R. Nucleotide sequence of 5 S ribosomal RNA precursor from Bacillus subtilis. J Biol Chem. 1976 Jun 10;251(11):3480–3488. [PubMed] [Google Scholar]