Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jun;130(3):1098–1108. doi: 10.1128/jb.130.3.1098-1108.1977

Chloramphenicol-Induced Changes in the Synthesis of Ribosomal, Transfer, and Messenger Ribonucleic Acids in Escherichia coli B/r

V Shen a,1, H Bremer a
PMCID: PMC235332  PMID: 324974

Abstract

The synthesis of ribosomal ribonucleic acid (rRNA), transfer RNA (tRNA) and messenger RNA (mRNA) was measured in Escherichia coli B/r after the addition of 100 μg of chloramphenicol (CAM) per ml to cultures growing either in one of three minimal media (succinate, glycerol, or glucose) or in one of the same three media supplemented with 20 amino acids. (i) During CAM treatment, rRNA and tRNA were synthesized in the same relative proportions (85:15) as during exponential growth. The faster accumulation of tRNA relative to rRNA in CAM was due to a decreased stability of rRNA that is synthesized in the presence of or immediately before the addition of CAM. (ii) CAM stimulated the synthesis of rRNA and tRNA two- to eightfold. The results fell into two groups; one group was from studies done in minimal media and the other was from amino acid-supplemented media. In each group the stimulation decreased with increasing growth rate of the culture during exponential growth before the addition of CAM; however, the stimulation in minimal media was lower than that in amino acid-supplemented media. (iii) CAM caused an increase in the proportion of rRNA and tRNA synthesis and a corresponding decrease in the proportion of mRNA synthesis. In minimal media, the residual proportion of mRNA synthesis after CAM treatment was 10 to 15% of total RNA synthesis; in amino acid-supplemented media this proportion was 0 to 10%. In either case, the residual proportion of mRNA synthesis was independent of the proportions observed during exponential growth in these media. (iv) The absolute rate of mRNA synthesis decreased severalfold with the addition of CAM; i.e., the rate of synthesis of rRNA and tRNA was increased at the expense of mRNA synthesis. (v) During exponential growth, the fraction of the instantaneous rate of total RNA synthesis that corresponds to mRNA is a function of both the growth rate and the presence or absence of amino acids in the growth medium: in the absence of amino acids, this fraction decreased with increasing growth rate; in the presence of amino acids, the fraction increased slightly with growth rate. These results are consistent with a regulation of rRNA and tRNA synthesis at the transcriptional level, e.g., with a CAM-induced increase in the affinity of RNA polymerase for the rRNA and tRNA promoters. The results also suggest the occurrence of a regulation of RNA polymerase enzyme activity, i.e., of an activation of RNA polymerase that is inactive during exponential growth. A distinction between these alternatives requires measurements of the rRNA chain growth rates during CAM treatment.

Full text

PDF
1098

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bremer H., Berry L., Dennis P. P. Regulation of ribonucleic acid synthesis in Escherichia coli B-r: an analysis of a shift-up. II. Fraction of RNA polymerase engaged in the synthesis of stable RNA at different steady-state growth rates. J Mol Biol. 1973 Mar 25;75(1):161–179. doi: 10.1016/0022-2836(73)90536-6. [DOI] [PubMed] [Google Scholar]
  3. Bremer H., Hymes J., Dennis P. P. Ribosomal RNA chain growth rate and RNA labeling patterns in Escherichia coli B-r. J Theor Biol. 1974 Jun;45(2):379–403. doi: 10.1016/0022-5193(74)90120-9. [DOI] [PubMed] [Google Scholar]
  4. Bremer H., Yuan D. Chain growth rate of messenger RNA in Escherichia coli infected with bacteriophage T4. J Mol Biol. 1968 Jun 28;34(3):527–540. doi: 10.1016/0022-2836(68)90178-2. [DOI] [PubMed] [Google Scholar]
  5. Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969 Jun 25;244(12):3133–3141. [PubMed] [Google Scholar]
  6. Colli W., Smith I., Oishi M. Physical linkage between 5 s, 16 s and 23 s ribosomal RNA genes in Bacillus subtilis. J Mol Biol. 1971 Feb 28;56(1):117–127. doi: 10.1016/0022-2836(71)90088-x. [DOI] [PubMed] [Google Scholar]
  7. Dennis P. P., Bremer H. A method for determination of the synthesis rate of stable and unstable ribonucleic acid in Escherichia coli. Anal Biochem. 1973 Dec;56(2):489–501. doi: 10.1016/0003-2697(73)90216-9. [DOI] [PubMed] [Google Scholar]
  8. Dennis P. P., Bremer H. Macromolecular composition during steady-state growth of Escherichia coli B-r. J Bacteriol. 1974 Jul;119(1):270–281. doi: 10.1128/jb.119.1.270-281.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dennis P. P., Bremer H. Regulation of ribonucleic acid synthesis in Escherichia coli B-r: an analysis of a shift-up. 1. Ribosomal RNA chain growth rates. J Mol Biol. 1973 Mar 25;75(1):145–159. doi: 10.1016/0022-2836(73)90535-4. [DOI] [PubMed] [Google Scholar]
  10. Doolittle W. F., Pace N. R. Synthesis of 5S ribosomal RNA in Escherichia coli after rifampicin treatment. Nature. 1970 Oct 10;228(5267):125–129. doi: 10.1038/228125a0. [DOI] [PubMed] [Google Scholar]
  11. Ezekiel D. H., Valulis B. Increase in functional transfer ribonucleic acid during prolonged incubation in chloramphenicol. Biochim Biophys Acta. 1965 Sep 6;108(1):135–136. doi: 10.1016/0005-2787(65)90116-4. [DOI] [PubMed] [Google Scholar]
  12. Gallant J., Margason G., Finch B. On the turnover of ppGpp in Escherichia coli. J Biol Chem. 1972 Oct 10;247(19):6055–6058. [PubMed] [Google Scholar]
  13. Gillespie S., Gillespie D. Ribonucleic acid-deoxyribonucleic acid hybridization in aqueous solutions and in solutions containing formamide. Biochem J. 1971 Nov;125(2):481–487. doi: 10.1042/bj1250481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hayes F., Vasseur M., Nikolaev N., Schlessinger D., Sri Widada J., Krol A., Branlant C. Structure of a 30 S pre-ribosomal RNA of E. coli. FEBS Lett. 1975 Aug 1;56(1):85–91. doi: 10.1016/0014-5793(75)80117-7. [DOI] [PubMed] [Google Scholar]
  15. KURLAND C. G., MAALOE O. Regulation of ribosomal and transfer RNA synthesis. J Mol Biol. 1962 Mar;4:193–210. doi: 10.1016/s0022-2836(62)80051-5. [DOI] [PubMed] [Google Scholar]
  16. Lazzarini R. A., Cashel M., Gallant J. On the regulation of guanosine tetraphosphate levels in stringent and relaxed strains of Escherichia coli. J Biol Chem. 1971 Jul 25;246(14):4381–4385. [PubMed] [Google Scholar]
  17. Lazzarini R. A., Santangelo E. Effect of chloramphenicol on the synthesis and stability of ribonucleic acid in Bacillus subtilis. J Bacteriol. 1968 Apr;95(4):1212–1220. doi: 10.1128/jb.95.4.1212-1220.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manor H., Goodman D., Stent G. S. RNA chain growth rates in Escherichia coli. J Mol Biol. 1969 Jan 14;39(1):1–29. doi: 10.1016/0022-2836(69)90329-5. [DOI] [PubMed] [Google Scholar]
  19. Massie H. R., Zimm B. H. Molecular weight of the DNA in the chromosomes of E. coli and B. subtilis. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1636–1641. doi: 10.1073/pnas.54.6.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCarthy B. J., Britten R. J. The Synthesis of Ribosomes in E. coli: I. The Incorporation of C-Uracil into the Metabolic Pool and RNA. Biophys J. 1962 Jan;2(1):35–47. doi: 10.1016/s0006-3495(62)86839-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Messer W. Initiation of deoxyribonucleic acid replication in Escherichia coli B-r: chronology of events and transcriptional control of initiation. J Bacteriol. 1972 Oct;112(1):7–12. doi: 10.1128/jb.112.1.7-12.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Midgley J. E., Gray W. J. The control of ribonucleic acid synthesis in bacteria. The synthesis and stability of ribonucleic acid in chloramphenicol-inhibited cultures of Escherichia coli. Biochem J. 1971 Apr;122(2):149–159. doi: 10.1042/bj1220149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nierlich D. P. Regulation of ribonucleic acid synthesis in growing bacterial cells. II. Control over the composition of the newly made RNA. J Mol Biol. 1972 Dec 30;72(3):765–777. doi: 10.1016/0022-2836(72)90190-8. [DOI] [PubMed] [Google Scholar]
  24. Nikolaev N., Schlessinger D., Wellauer P. K. 30 S pre-ribosomal RNA of Escherichia coli and products of cleavage by ribonuclease III: length and molecular weight. J Mol Biol. 1974 Jul 15;86(4):741–747. doi: 10.1016/0022-2836(74)90350-7. [DOI] [PubMed] [Google Scholar]
  25. Norris T. E., Koch A. L. Effect of growth rate on the relative rates of synthesis of messenger, ribosomal and transfer RNA in Escherichia coli. J Mol Biol. 1972 Mar 14;64(3):633–649. doi: 10.1016/0022-2836(72)90088-5. [DOI] [PubMed] [Google Scholar]
  26. Pace N. R. Structure and synthesis of the ribosomal ribonucleic acid of prokaryotes. Bacteriol Rev. 1973 Dec;37(4):562–603. doi: 10.1128/br.37.4.562-603.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  28. Travers A. Modulation of RNA polymerase specificity by ppGpp. Mol Gen Genet. 1976 Aug 19;147(2):225–232. doi: 10.1007/BF00267575. [DOI] [PubMed] [Google Scholar]
  29. Yuan D., Shen V. Stability of ribosomal and transfer ribonucleic acid in Escherichia coli B/r after treatment with ethylenedinitrilotetraacetic acid and rifampicin. J Bacteriol. 1975 May;122(2):425–432. doi: 10.1128/jb.122.2.425-432.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. van Ooyen A. J., Gruber M., Jorgensen P. The mechanism of action of ppGpp on rRNA synthesis in vitro. Cell. 1976 May;8(1):123–128. doi: 10.1016/0092-8674(76)90193-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES