Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jun;130(3):1139–1143. doi: 10.1128/jb.130.3.1139-1143.1977

6-Phospho-D-gluconate:NAD+ 2-oxidoreductase (decarboxylating) from slow-growing Rhizobia.

G Martínez-Drets, A Gardiol, A Arias
PMCID: PMC235337  PMID: 16867

Abstract

6-Phospho-D-gluconate:NAD+ 2-oxidoreductase (decarboxylating) (NAD+-6PGD) was detected in several slow-growing strains of rhizobia, and no activity involving NADP+ was found in the same extracts. By contrast, fast-growing strains of rhizobia had NADP+-6PGD activity; most of them also had NAD+-6PGD activity. NAD+-6PGD was partially purified from the slow-growing strain Rhizobium japonicum 5006. The reaction was shown to be an oxidative decarboxylation.

Full text

PDF
1139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowien B., Schlegel H. G. Der Biosyntheseweg der RNS-Ribose in Hydrogenomonas eutropha Stamm H 16 und Pseudomonas facilis. Arch Mikrobiol. 1972;85(2):95–112. doi: 10.1007/BF00409291. [DOI] [PubMed] [Google Scholar]
  2. Brown A. T., Wittenberger C. L. Induction and regulation of a nicotinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis. J Bacteriol. 1972 Jan;109(1):106–115. doi: 10.1128/jb.109.1.106-115.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HORECKER B. L., SMYRNIOTIS P. Z. Phosphogluconic acid dehydrogenase from yeast. J Biol Chem. 1951 Nov;193(1):371–381. [PubMed] [Google Scholar]
  4. KATZNELSON H., ZAGALLO A. C. Metabolism of rhizobia in relation to effectiveness. Can J Microbiol. 1957 Oct;3(6):879–884. doi: 10.1139/m57-097. [DOI] [PubMed] [Google Scholar]
  5. Keele B. B., Jr, Hamilton P. B., Elkan G. H. Glucose catabolism in Rhizobium japonicum. J Bacteriol. 1969 Mar;97(3):1184–1191. doi: 10.1128/jb.97.3.1184-1191.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Martínez-De Drets G., Arias A. Enzymatic basis for differentiation of Rhizobium into fast- and slow-growing groups. J Bacteriol. 1972 Jan;109(1):467–470. doi: 10.1128/jb.109.1.467-470.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nutman P. S. Variation within Strains of Clover Nodule Bacteria in Size of Nodule Produced and in "Effectivity" of Symbiosis. J Bacteriol. 1946 Apr;51(4):411–432. [PMC free article] [PubMed] [Google Scholar]
  8. Pearse B. M., Rosemeyer M. A. 6-Phosphogluconate dehydrogenase from human erythrocytes. Methods Enzymol. 1975;41:220–226. doi: 10.1016/s0076-6879(75)41051-5. [DOI] [PubMed] [Google Scholar]
  9. Rippa M., Signorini M. 6-Phosphogluconate dehydrogenase from Candida utilis. Methods Enzymol. 1975;41:237–240. doi: 10.1016/s0076-6879(75)41054-0. [DOI] [PubMed] [Google Scholar]
  10. SCOTT D. B., COHEN S. S. The oxidative pathway of carbohydrate metabolism in Escherichia coli. 1. The isolation and properties of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Biochem J. 1953 Aug;55(1):23–33. doi: 10.1042/bj0550023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Scott W. A., Abramsky T. Neurospora 6-phosphogluconate dehydrogenase. I. Purification and characterization of the wild type enzyme. J Biol Chem. 1973 May 25;248(10):3535–3541. [PubMed] [Google Scholar]
  12. Silverberg M., Dalziel K. 6-Phospho-D-gluconate dehydrogenase from sheep liver. Methods Enzymol. 1975;41:214–220. doi: 10.1016/s0076-6879(75)41050-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES