Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jun;130(3):1159–1174. doi: 10.1128/jb.130.3.1159-1174.1977

Energy Requirements for the Transport of Methylthio-β-d-Galactoside by Escherichia coli: Measurement by Microcalorimetry and by Rates of Oxygen Consumption and Carbon Dioxide Production1

Richard A Long a, W G Martin a, Henry Schneider a
PMCID: PMC235340  PMID: 324976

Abstract

The energy cost for maintenance of gradients of methylthio-β-d-galactoside in Escherichia coli was evaluated. Information was also obtained concerning the energy flow associated with gradient establishment under some circumstances. Energy flow was evaluated from transport-induced changes in the rate of heat evolution, oxygen consumption, and carbon dioxide production in metabolically active cells. Heats were measured with an isothermal calorimeter. Energy expenditure behavior was characterized by a transition that depended on the level of accumulation. The data for steady-state maintenance could be rationalized in terms of the Mitchell hypothesis, two models for influx and efflux, and a transition between them. At low levels of uptake, steady-state proton-methylthio-β-d-galactoside (TMG) symport for influx and efflux occurred via a nonenergy-requiring exchange process. The only energy requirement was that necessary to pump back in any TMG exiting via a leakage pathway (model I). Above the transition, all influx occurred with proton symport, but all exit, leak and carrier mediated, occurred without proton symport (model II). The H+/TMG stoichiometric ratio computed for the region of model II applicability (carbon source present, high level of uptake) approached 1. This value agreed with that of other workers for downhill β-galactoside flow, suggesting that the energy cost for both downhill and uphill flow was approximately the same. For low levels of uptake, initial establishment of the gradient was followed by a burst of metabolism that was much larger than that expected on the basis of the chemiosmotic hypothesis. In the absence of carbon source, the stimulation in respiration was sufficient to produce 13 times more protons than are apparently necessary to establish the gradient. The results indicate also that the nature of the biochemical process stimulated by TMG depends on its level of uptake. Insight into several aspects of the nature of these processes was provided through analysis of the heat, oxygen, and CO2 data. The key factor controlling the transition in energy flow behavior is suggested to be rate of flux. The present data suggest that it occurs at a flux of ∼120 nmol/min per mg of protein.

Full text

PDF
1159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABELES R. H., DORFMAN A., ROSEMAN S. Behavior of carbohydrates toward strongly basic ion-exchange resins. Arch Biochem Biophys. 1952 Mar;36(1):232–233. doi: 10.1016/0003-9861(52)90394-9. [DOI] [PubMed] [Google Scholar]
  2. Belaich A., Belaich J. P. Microcalorimetric study of the anaerobic growth of Escherichia coli: growth thermograms in a synthetic medium. J Bacteriol. 1976 Jan;125(1):14–18. doi: 10.1128/jb.125.1.14-18.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Farmer I. S., Jones C. W. The energetics of Escherichia coli during aerobic growth in continuous culture. Eur J Biochem. 1976 Aug 1;67(1):115–122. doi: 10.1111/j.1432-1033.1976.tb10639.x. [DOI] [PubMed] [Google Scholar]
  4. Grüneberg A., Komor E. Different proton-sugar stoichiometries for the uptake of glucose analogues by Chlorella vulgaris. Evidence for sugar-dependent proton uptake without concomitant sugar uptake by the proton-sugar symport system. Biochim Biophys Acta. 1976 Sep 21;448(1):133–142. doi: 10.1016/0005-2736(76)90082-1. [DOI] [PubMed] [Google Scholar]
  5. HERZENBERG L. A. Studies on the induction of beta-galactosidase in a cryptic strain of Escherichia coli. Biochim Biophys Acta. 1959 Feb;31(2):525–538. doi: 10.1016/0006-3002(59)90029-0. [DOI] [PubMed] [Google Scholar]
  6. Harold F. M., Baarda J. R., Baron C., Abrams A. Dio 9 and chlorhexidine: inhibitors of membrane-bound ATPase and of cation transport in Streptococcus faecalis. Biochim Biophys Acta. 1969 Jun 3;183(1):129–136. doi: 10.1016/0005-2736(69)90136-9. [DOI] [PubMed] [Google Scholar]
  7. Harold F. M., Baarda J. R., Baron C., Abrams A. Inhibition of membrane-bound adenosine triphosphatase and of cation transport in Streptococcus faecalis by N,N'-dicyclohexylcarbodiimide. J Biol Chem. 1969 May 10;244(9):2261–2268. [PubMed] [Google Scholar]
  8. Jones C. W., Brice J. M., Downs A. J., Drozd J. W. Bacterial respiration-linked proton translocation and its relationship to respiratory-chain composition. Eur J Biochem. 1975 Mar 17;52(2):265–271. doi: 10.1111/j.1432-1033.1975.tb03994.x. [DOI] [PubMed] [Google Scholar]
  9. KEPES A. Métabolisme oxydatif lié au fonctionnement de la galactoside-perméase d'Escherichia coli. C R Hebd Seances Acad Sci. 1957 Mar 11;244(11):1550–1553. [PubMed] [Google Scholar]
  10. KEPES A. [Kinetic studies on galactoside permease of Escherichia coli]. Biochim Biophys Acta. 1960 May 6;40:70–84. doi: 10.1016/0006-3002(60)91316-0. [DOI] [PubMed] [Google Scholar]
  11. KOCH A. L. The inactivation of the transport mechanism for beta-galactosides of Escherichia coli under various physiological conditions. Ann N Y Acad Sci. 1963 Jan 21;102:602–620. doi: 10.1111/j.1749-6632.1963.tb13663.x. [DOI] [PubMed] [Google Scholar]
  12. Komor E., Haass D., Tanner W. Unusual features of the active hexose uptake system of Chlorella vulgaris. Biochim Biophys Acta. 1972 Jun 20;266(3):649–660. doi: 10.1016/0006-3002(72)90008-x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lagarde A. E., Haddock B. A. Proton uptake linked to the 3-deoxy-2-oxo-d-gluconate-transport system of Escherichia coli. Biochem J. 1977 Jan 15;162(1):183–187. doi: 10.1042/bj1620183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lancaster J. R., Jr, Hill R. J., Struve W. G. The characterization of energized and partially de-energized (respiration-independent) beta-galactoside transport into Escherichia coli. Biochim Biophys Acta. 1975 Aug 20;401(2):285–298. doi: 10.1016/0005-2736(75)90312-0. [DOI] [PubMed] [Google Scholar]
  16. Lawford H. G., Haddock B. A. Respiration-driven proton translocation in Escherichia coli. Biochem J. 1973 Sep;136(1):217–220. doi: 10.1042/bj1360217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Long R. A., Sprott G. D., Labelle J. L., Martin W. G., Schneider H. Thermal events associated with active membrane transport in Escherichia coli. Biochem Biophys Res Commun. 1975 May 19;64(2):656–662. doi: 10.1016/0006-291x(75)90371-x. [DOI] [PubMed] [Google Scholar]
  18. Maloney P. C., Wilson T. H. Quantitative aspects of active transport by the lactose transport system of Escherichia coli. Biochim Biophys Acta. 1973 Dec 13;330(2):196–205. doi: 10.1016/0005-2736(73)90225-3. [DOI] [PubMed] [Google Scholar]
  19. Mitchell P. Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. Biochem Soc Trans. 1976;4(3):399–430. doi: 10.1042/bst0040399. [DOI] [PubMed] [Google Scholar]
  20. Peterkofsky A., Gazdar C. Interaction of enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system with adenylate cyclase of Escherichia coli. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2920–2924. doi: 10.1073/pnas.72.8.2920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Poole R. K., Haddock B. A. Microcalorimetric measurements of heat evolution and their correlation with oxygen uptake in Escherichia coli with genotypically- and phenotypically-modified electron transport chains. FEBS Lett. 1975 Oct 15;58(1):248–253. doi: 10.1016/0014-5793(75)80271-7. [DOI] [PubMed] [Google Scholar]
  22. Purdy D. R., Koch A. L. Energy cost of galactoside transport to Escherichia coli. J Bacteriol. 1976 Sep;127(3):1188–1196. doi: 10.1128/jb.127.3.1188-1196.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rae A. S., Strickland K. P. Studies on phosphate transport in Escherichia coli. II. Effects of metabolic inhibitors and divalent cations. Biochim Biophys Acta. 1976 May 21;433(3):564–582. doi: 10.1016/0005-2736(76)90282-0. [DOI] [PubMed] [Google Scholar]
  24. SCHULTZ S. G., SOLOMON A. K. Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol. 1961 Nov;45:355–369. doi: 10.1085/jgp.45.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Siakotos A. N. Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography. J Am Oil Chem Soc. 1965 Nov;42(11):913–919. doi: 10.1007/BF02632444. [DOI] [PubMed] [Google Scholar]
  26. Springer S. E., Huber R. E. Sulfate and selenate uptake and transport in wild and in two selenate-tolerant strains of Escherichia coli K-12. Arch Biochem Biophys. 1973 Jun;156(2):595–603. doi: 10.1016/0003-9861(73)90310-x. [DOI] [PubMed] [Google Scholar]
  27. West I. C. Lactose transport coupled to proton movements in Escherichia coli. Biochem Biophys Res Commun. 1970 Nov 9;41(3):655–661. doi: 10.1016/0006-291x(70)90063-x. [DOI] [PubMed] [Google Scholar]
  28. West I. C., Mitchell P. Stoicheiometry of lactose-H+ symport across the plasma membrane of Escherichia coli. Biochem J. 1973 Mar;132(3):587–592. doi: 10.1042/bj1320587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. West I., Mitchell P. Proton-coupled beta-galactoside translocation in non-metabolizing Escherichia coli. J Bioenerg. 1972 Aug;3(5):445–462. doi: 10.1007/BF01516082. [DOI] [PubMed] [Google Scholar]
  30. Winkler H. H., Wilson T. H. Inhibition of beta-galactoside transport by substrates of the glucose transport system in Escherichia coli. Biochim Biophys Acta. 1967;135(5):1030–1051. doi: 10.1016/0005-2736(67)90073-9. [DOI] [PubMed] [Google Scholar]
  31. Winkler H. H., Wilson T. H. The role of energy coupling in the transport of beta-galactosides by Escherichia coli. J Biol Chem. 1966 May 25;241(10):2200–2211. [PubMed] [Google Scholar]
  32. Zarlengo M. H., Schultz S. G. Cation transport and metabolism in Streptococcus fecalis. Biochim Biophys Acta. 1966 Oct 10;126(2):308–320. doi: 10.1016/0926-6585(66)90068-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES