Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1977 Jul;131(1):49–56. doi: 10.1128/jb.131.1.49-56.1977

Fine-structure mapping and complementation analysis of the Escherichia coli cysB gene.

M Tully, M D Yudkin
PMCID: PMC235389  PMID: 326769

Abstract

Sixty-two point mutations were isolated in Escherichia coli by means of transduction with mutagenized phage P1. Twenty-two deletions extending into cysB but able to recombine with at least some of the point mutations were isolated on a transmissible E. coli plasmid. Mapping of the point mutations against the deletions divided the former into 16 deletion groups. Nine merodiploids were constructed in which the chromosome carried one of the three point mutations most distal to the trp operon and in which a plasmid carried one of the three point mutations most proximal to the trp operon. All of these showed a Cys-phenotype. It follows that mutations at the two extreme ends of the region belong to the same complementation group.

Full text

PDF
49

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLOWES R. C. Investigation of the genetics of cysteineless mutants of Salmonella typhimurium by transduction. J Gen Microbiol. 1958 Feb;18(1):154–172. doi: 10.1099/00221287-18-1-154. [DOI] [PubMed] [Google Scholar]
  2. CLOWES R. C. Nutritional studies of cysteineless mutants of Salmonella typhimurium. J Gen Microbiol. 1958 Feb;18(1):140–153. doi: 10.1099/00221287-18-1-140. [DOI] [PubMed] [Google Scholar]
  3. Cheney R. W., Jr, Kredich N. M. Fine-structure genetic map of the cysB locus in Salmonella typhimurium. J Bacteriol. 1975 Dec;124(3):1273–1281. doi: 10.1128/jb.124.3.1273-1281.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dubnau E., Lenny A. B., Margolin P. Nonsense mutations of the supX locus: further characterization of the supX mutant phenotype. Mol Gen Genet. 1973 Nov 12;126(3):191–200. doi: 10.1007/BF00267530. [DOI] [PubMed] [Google Scholar]
  5. Englesberg E., Wilcox G. Regulation: positive control. Annu Rev Genet. 1974;8:219–242. doi: 10.1146/annurev.ge.08.120174.001251. [DOI] [PubMed] [Google Scholar]
  6. Gottesman S., Beckwith J. R. Directed transposition of the arabinose operon: a technique for the isolation of specialized transducing bacteriophages for any Escherichia coli gene. J Mol Biol. 1969 Aug 28;44(1):117–127. doi: 10.1016/0022-2836(69)90408-2. [DOI] [PubMed] [Google Scholar]
  7. Ino I., Demerec M. Enteric hybrids. II. S. typhimurium-E. coli hybrids for the trp-cysB-pyrF region. Genetics. 1968 Jun;59(2):167–176. doi: 10.1093/genetics/59.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jones-Mortimer M. C. Positive control of sulphate reduction in Escherichia coli. Isolation, characterization and mapping oc cysteineless mutants of E. coli K12. Biochem J. 1968 Dec;110(3):589–595. doi: 10.1042/bj1100589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones-Mortimer M. C. Positive control of sulphate reduction in Escherichia coli. The nature of the pleiotropic cysteineless mutants of E. coli K12. Biochem J. 1968 Dec;110(3):597–602. doi: 10.1042/bj1100597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jones-Mortimer M. C., Wheldrake J. F., Pasternak C. A. The control of sulphate reduction in Escherichia coli by O-acetyl-L-serine. Biochem J. 1968 Mar;107(1):51–53. doi: 10.1042/bj1070051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kredich N. M., Becker M. A., Tomkins G. M. Purification and characterization of cysteine synthetase, a bifunctional protein complex, from Salmonella typhimurium. J Biol Chem. 1969 May 10;244(9):2428–2439. [PubMed] [Google Scholar]
  12. Kredich N. M. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. I. Effects of growth of varying sulfur sources and O-acetyl-L-serine on gene expression. J Biol Chem. 1971 Jun 10;246(11):3474–3484. [PubMed] [Google Scholar]
  13. Marsh N. J., Duggan D. E. Ordering of mutant sites in the isoleucine-valine genes of Escherichia coli by use of merogenotes derived from F 14 : a new procedure for fine-structure mapping. J Bacteriol. 1972 Feb;109(2):730–740. doi: 10.1128/jb.109.2.730-740.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mizobuchi K, Demerec M, Gillespie D H. Cysteine Mutants of Salmonella Typhimurium. Genetics. 1962 Nov;47(11):1617–1627. doi: 10.1093/genetics/47.11.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mojica-A T., Middleton R. B. Salmonella typhimurium-Escherichia coli hybrids for the tryptophan region. Genetics. 1972 Aug;71(4):491–505. doi: 10.1093/genetics/71.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murgola E. J., Yanofsky C. Structural interactions between amino acid residues at positions 22 and 211 in the tryptophan synthetase alpha chain of Escherichia coli. J Bacteriol. 1974 Feb;117(2):444–448. doi: 10.1128/jb.117.2.444-448.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pardee A. B., Prestidge L. S., Whipple M. B., Dreyfuss J. A binding site for sulfate and its relation to sulfate transport into Salmonella typhimurium. J Biol Chem. 1966 Sep 10;241(17):3962–3969. [PubMed] [Google Scholar]
  18. Power J. The L-rhamnose genetic system in Escherichia coli K-12. Genetics. 1967 Mar;55(3):557–568. doi: 10.1093/genetics/55.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Somerville R. L. Tryptophan operon of Escherichia coli: regulatory behavior in Salmonella typhimurium cytoplasm. Science. 1966 Dec 23;154(3756):1585–1587. doi: 10.1126/science.154.3756.1585. [DOI] [PubMed] [Google Scholar]
  20. Tully M., Yudkin M. D. The nature of the product of the cys B gene of Escherichia coli. Mol Gen Genet. 1975;136(2):181–183. doi: 10.1007/BF00272038. [DOI] [PubMed] [Google Scholar]
  21. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  22. YANOFSKY C. The enzymatic conversion of anthranilic acid to indole. J Biol Chem. 1956 Nov;223(1):171–184. [PubMed] [Google Scholar]
  23. Yanofsky C., Horn V., Bonner M., Stasiowski S. Polarity and enzyme functions in mutants of the first three genes of the tryptophan operon of Escherichia coli. Genetics. 1971 Dec;69(4):409–433. doi: 10.1093/genetics/69.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yudkin M. D. Mutations in Escherichia coli that relieve catabolite repression of tryptophanase synthesis. Mutations distant from the tryptophanase gene. J Gen Microbiol. 1976 Jan;92(1):125–132. doi: 10.1099/00221287-92-1-125. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES